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Abstract

Many policy problems involve designing individualized treatment allocation rules to

maximize the equilibrium social welfare of interacting agents. Focusing on large-scale

simultaneous decision games with strategic complementarities, we develop a method to

estimate an optimal treatment allocation rule that is robust to the presence of multiple

equilibria. Our approach remains agnostic about changes in the equilibrium selection

mechanism under counterfactual policies, and we provide a closed-form expression for

the boundary of the identified set of equilibrium outcomes. To address the incompleteness

that arises when an equilibrium selection mechanism is not specified, we use a maximin

welfare criterion to select a policy based on the “least favourable” equilibrium outcome,

and implement this policy using a greedy algorithm. We establish performance guarantees

for our method by deriving a welfare regret bound, which accounts for sampling uncer-

tainty and the use of a greedy algorithm. We demonstrate our method with an application

to the microfinance dataset of Banerjee et al. (2013).
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1 Introduction

Many policy problems involve allocating treatment among a network of interacting agents.

Examples include technology diffusion (Parente and Prescott, 1994; Alvarez et al., 2023),

teenage smoking (Nakajima, 2007), consumer adoption decisions (Banerjee et al., 2013;

Keane and Wasi, 2013), and education and migration (Hsiao, 2022). Research in these fields

highlights the role of spillover effects, particularly those arising from strategic interactions.

Among other things, these strategic interactions lead to the presence of multiple Nash

equilibria, which complicates the process of finding an optimal treatment allocation policy.

To handle this multiplicity, counterfactual policy analysis “has made simplifying assumptions
which either change the outcome space or impose ad hoc selection mechanisms in regions of mul-
tiplicity” (Tamer, 2003). Consequently, this approach “potentially introduces misspecifications
and nonrobustness in the analysis of substantive questions” (De Paula, 2013). To address this

problem, can we develop a treatment allocation rule that remains optimal even under the

least favorable equilibrium?

Focusing on a class of network models where units participate in a simultaneous deci-

sion game with strategic complementarity (Brock and Durlauf, 2001; Ballester et al., 2006;

Molinari and Rosen, 2008; Jia, 2008; Echenique and Komunjer, 2009; Lazzati, 2015; Gra-

ham and Pelican, 2023), this paper develops a method for constructing a maximin optimal

treatment allocation rule that is robust to the presence of multiple Nash equilibria. A plan-

ner allocates a binary treatment among a target population of N units embedded within a

network, where each unit’s covariates and the network structure are observable. Each unit

then simultaneously chooses a binary action to maximize its own utility, which depends on

its own characteristics and treatment, as well as the characteristics, treatments, and expected

choice of its neighbors1. Our goal is to learn a treatment allocation policy that maximizes

social welfare for the target population.

To determine the optimal treatment allocation rule for the target population, we assume

that there exists data for a social network of units who have been assigned treatment in the

past. This sample may differ from the target population in terms of both the number of

units and the network structure. Data is assumed to be available for each unit’s covariates,

decisions, and assignments, as well as those of their neighbors. After assessing how individ-

ual outcomes vary in response to different treatment allocations among the training sample,

we analyze the optimal treatment allocation strategy, taking into account the covariates and

network structure of the target population. Consider, for example, targeted information pro-

1This incomplete information setting (Brock and Durlauf, 2001; Bajari et al., 2010a; de Paula and Tang,
2012), is our primary focus. Section 7 extends our results to the complete information setting.
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vision in villages with the aim of increasing microfinance adoption, as discussed in Banerjee

et al. (2013). By analyzing heterogeneous choices among the units in villages selected by

policymakers, we then estimate whom to better target in external villages.

There are both theoretical and practical challenges to studying optimal treatment allo-

cation in the presence of strategic interactions. The primary theoretical challenge is incom-

pleteness (Jovanovic, 1989) of the model when there are multiple Nash equilibria2. With-

out assuming an equilibrium selection mechanism, our model predicts a set of equilibrium

outcomes under a counterfactual policy. From a theoretical perspective, one cannot judge

which equilibrium outcome is more likely than the others. This paper allows for these mul-

tiple equilibria and imposes no assumptions on equilibrium selection. Instead, we provide

set-identified equilibrium social welfare for any treatment allocation policy, along with a

closed-form expression that characterizes the bounds of this set.

As the counterfactual equilibrium social welfare is only set-identified, we cannot directly

target equilibrium welfare when designing a treatment allocation rule. To address this uncer-

tainty, we refine the optimality of treatment allocation using the maximin welfare criterion.

This criterion is employed in the robust decision theory literature (e.g., Chamberlain, 2000a),

and the robust mechanism design literature (e.g., Morris et al., 2024). Under the maximin

welfare criterion, our objective is to design a treatment allocation policy that maximizes social

welfare evaluated under the least favourable equilibrium selection rule.

In terms of implementation, there are two challenges. We adopt a parametric utility func-

tion specification, and the first challenge is estimating the parameters of this utility function.

We assume the existence of a one-period training data set that contains a finite number n

of units, along with their covariates and the network structure3. An existing treatment allo-

cation policy is assumed, and we observe each unit’s choice under this policy. We estimate

parameters using the two-step maximum likelihood estimator proposed by Leung (2015).

However, in the context of a network game setting, the asymptotic behavior of this estimator

cannot be characterized without assuming how the network structure changes as the number

of units increases (i.e., whether the network is dense or sparse). Although non-asymptotic

results could elucidate how the sampling uncertainty of this estimator is influenced by net-

work structure, the current literature lacks such analysis. Addressing this gap is one of the

primary focuses of our paper.

The second challenge to implementation is finding the maximin optimal treatment al-

location, which requires optimizing an of an objective function dependent on a system of

2See the detailed surveys by De Paula (2013); Molinari (2020); Kline and Tamer (2020).
3We allow the training data to come from our target population, with caveats about the private information

of each unit. A more detailed discussion is provided in Section 4.1.2.
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simultaneous equations. In the presence of strategic interactions, when a treatment is as-

signed to a unit, it not only influences their behavior but also that of their neighbors. This, in

turn, affects the payoff of their neighbors’ neighbors, propagating feedback effects through-

out the network and presenting a complex combinatorial optimization problem. To tackle this

complexity, we propose a greedy algorithm. This algorithm sequentially assigns treatment to

the agent who yields the highest marginal welfare gain at each step. However, this class of

algorithm generally lacks a performance guarantee. We address this by characterizing the

performance guarantee through the features of our objective function.

We evaluate the performance of our proposed method based on its regret, which is defined

as the difference between the largest achievable welfare and the welfare achieved by our

proposed method, evaluated under the least favourable equilibrium selection rule. Regret

arises from two sources of uncertainty: The first is due to the use of estimated structural

parameters, and reflects sampling uncertainty. The second is due to the use of a greedy

algorithm.

This paper makes three theoretical contributions: (i) It provides a closed-form expression

for the identified set corresponding to the equilibrium outcomes under any arbitrary policy

intervention. The heavy computation costs due to the large number of equilibria have limited

the range of empirical applications in the literature to static models with a small number of

players and choice alternatives. Our approach avoids computing the set of equilibria and

hence allows for a feasible characterization of the identified region for the equilibrium social

welfare; (ii) It presents the first non-asymptotic result on regret with strategic interactions.

It shows that, under regularity conditions, the regret introduced by sampling uncertainty

shrinks at the rate log(n)/
√
n; (iii) It offers a theoretical performance guarantee for the regret

associated with using a greedy algorithm to solve optimization problems involving systems

of simultaneous equations, a topic previously unexplored in the existing literature.

To demonstrate how our method can be implemented and quantitatively evaluate its per-

formance, we apply it to the data of Banerjee et al. (2013). We design a policy to maximize

the take-up rate of microfinance products among households across various villages. For

each village in the sample, we estimate the utility function parameters. These estimates are

then used to assess the presence of strategic complementarity in each village. We find that

strategic complementarities are present in 16 out of the 43 villages. For these villages, we

construct an individualized treatment allocation rule using our greedy algorithm. Empirical

results revealed that the occurrence of multiple equilibria can vary depending on the alloca-

tion method used. We compare the welfare outcomes achieved by our algorithm with those

obtained by the NGO Bharatha Swamukti Samsthe (BSS). Our results indicate that, for all

16 villages exhibiting strategic complementarity, our method achieves notably higher welfare
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levels, with improvements ranging from 20% to 270%, and an average improvement of 116%.

Additionally, the lower bound of welfare under our method consistently exceeds the maximal

welfare attained under the allocation rule used by BSS and a rule that assigns treatment at

random. These substantial welfare gains highlight the benefits of individualized targeting in

the presence of strategic interference, which demonstrates the efficacy of our approach in

optimizing resource allocation and improving social welfare.

1.1 Literature Review

This paper is related to several literatures in economics and econometrics, including strategic

interactions, statistical treatment rules, robust decision theory, robust mechanism design, and

greedy algorithms.

Pioneering contributions to the econometric aspects of game-theoretic models include

works by Jovanovic (1989) and Bresnahan and Reiss (1991), which explore the empirical

challenges associated with models that feature multiple equilibria. The recent literature on

the econometrics of strategic interactions includes simultaneous decision games with com-

plete information, such as Tamer (2003), Bajari et al. (2010a,b), De Paula et al. (2018),

Sheng (2020), and Chesher and Rosen (2020); simultaneous decision games with incom-

plete information, such as de Paula and Tang (2012, 2020), Menzel (2016), and Ridder and

Sheng (2020); and sequential decision games: Aguirregabiria and Mira (2007, 2019), Mele

(2017), Leung (2019), and Christakis et al. (2020).

Focusing on a game with complete information, Tamer (2003) obtains bounds for struc-

tural parameters while remaining fully agnostic about the equilibrium selection mechanism.

Motivated by this, Sheng (2020) uses a sub-network approach to provide bounds for struc-

tural parameters in a network formation setting. Chesher and Rosen (2020) partially iden-

tifies structural parameters using the Generalized Instrumental Variable approach (Chesher

and Rosen, 2017). Bajari et al. (2010a) point identifies the parameters for a game with

incomplete information, along with providing a semi-parametric estimator. However, estima-

tion methods typically require observing repeated samples of the game, which may not be

feasible for social network games. Motivated by this, Leung (2015) studies a two-step maxi-

mum likelihood estimator in a large network setting, while Ridder and Sheng (2020) studies

a two-step GMM estimator in a similar setting. The paper adopts an existing estimator for

structural parameters and treats this as an intermediate step in estimating an optimal policy.

One important task in obtaining an optimal policy is predicting the equilibrium outcome

under counterfactual policies. In the strategic interaction literature, counterfactual analysis

has been studied among others by Jia (2008), Aguirregabiria and Mira (2010), and Canen
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and Song (2020) under various assumptions on the equilibrium selection mechanism. Cilib-

erto and Tamer (2009) does not restrict the equilibrium selection rule but considers only

some candidate counterfactual policies. Additionally, Lee and Pakes (2009) investigates ATM

network games by enumerating all Nash equilibria and analyzing how different learning al-

gorithms select among them. None of these studies considers the aggregate equilibrium out-

come, which aggregates the equilibrium outcomes of each unit, under a counterfactual policy.

Here, we consider a social planner, and hence it is crucial to evaluate the aggregate social

welfare. Remaining fully agnostic about the equilibrium selection mechanism, we provide a

counterfactual analysis of the aggregate social welfare.

Strategic interactions are closely related to social interaction models. These were in-

troduced by Manski (1993), which examines spillover effects through strategic interactions

using a linear social interaction model with unique equilibrium. Brock and Durlauf (2001) ex-

tends this model to a nonlinear setting and considers multiple equilibria. Goldsmith-Pinkham

and Imbens (2013) considers the endogeneity of the network formation process. De Paula

et al. (2024) recovers unknown network structure using a linear social interaction model.

This paper contributes to the growing literature on statistical treatment rules, which were

introduced into econometrics by Manski (2004) and Dehejia (2005). The recent literature in-

cludes Stoye (2009, 2012), Hirano and Porter (2009, 2020), Chamberlain (2011), Kitagawa

and Tetenov (2018), Ananth (2020), Athey and Wager (2021), Mbakop and Tabord-Meehan

(2021), Kitagawa et al. (2021), Sun (2021), Munro et al. (2021), Christensen et al. (2022),

Adjaho and Christensen (2022), Kitagawa et al. (2022), Kitagawa and Wang (2023a,b), Vi-

viano (2024), Fernandez et al. (2024), and Munro (2024). In contrast to the i.i.d. setting

considered in most of these papers, we consider a setting where the spillover effects of treat-

ment assignment are important. A small number of papers in the literature considers spillover

effects. These include Viviano (2024), Ananth (2020), Munro et al. (2021), and Kitagawa

and Wang (2023a,b). Apart from Kitagawa and Wang (2023a), none of those papers con-

sider spillover effects introduced by strategic interaction or the related complications, such

as multiple equilibria.

Viviano (2024) and Ananth (2020) focus on estimating direct and indirect treatment ef-

fects to derive optimal allocation policies based on data. We focus on the strategic interaction

setting where each unit’s behavior is influenced by the behaviors of nearby individuals within

a network. These interactions are naturally modeled using game theory (Jackson and Zenou,

2015), which we adopt in our analysis. In addition, using a game theoretical approach en-

ables us to evaluate social welfare directly through the individual’s utility and account for the

general equilibrium effects. Munro et al. (2021) focuses on a competitive equilibrium where

spillover effects are mediated through the equilibrium price. Their approach uses the mean-
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field limit to characterize the asymptotic behavior of treatment effects, focusing on settings

where a unique mean-field equilibrium price exists. Kitagawa and Wang (2023a) focuses on

a sequential decision game with a Markovian structure, which leads to a unique stationary

joint distribution of units’ decisions (Mele, 2017). This stationary distribution allows each

state to be revisited instead of converging to multiple distinct equilibria. As a consequence,

their stationary welfare differs from the equilibrium welfare that we consider here and we do

not require the existence of a potential function. Kitagawa and Wang (2023b) considers the

spillover effects from vaccination.

Although the source of uncertainty is different, our paper robustly addresses the incom-

pleteness introduced by multiple equilibria in a manner inspired by the robust decision theory

literature (see the recent survey by Chamberlain, 2020). Chamberlain (2000a,b) consider

decision-making when there is uncertainty due to a partially specified subjective distribution.

Their robust decision rule maximizes the risk function evaluated at the least-favourable dis-

tribution. Hansen and Sargent (2001, 2008) achieve robustness by working within a neigh-

borhood of a reference model and maximizing the minimum of expected utility over that

neighborhood. Manski (2003) faces a similar problem to us where some part of the model is

missing from the data, and obtains a robust identification region by incorporating the max-

imum and minimum value of the unobserved component. Giacomini and Kitagawa (2021)

applies the robust Bayes approach of Berger (1994) to a set-identified model, and shows

asymptotic equivalence between the identified set and the set of posterior means obtained

from using a multiple priors. See also Giacomini et al. (2021) and references therein. Chris-

tensen and Connault (2023) relaxes parametric assumptions about the distribution of latent

variables in a structural model. Their robust counterfactual set is obtained by maximizing

(minimizing) the counterfactual through the distribution of latent variables over a neighbor-

hood of the prespecified parametric distribution.

Finally, this paper is closely related to network games and mechanism design, as exempli-

fied by Morris (2000), Ballester et al. (2006), Galeotti et al. (2010), and Galeotti et al. (2020)

for network games, and Mathevet (2010), Gonçalves and Furtado (2020), Fu et al. (2021),

Morris et al. (2024), and Brooks and Du (2024) for mechanism design. Network games ex-

plore how network characteristics influence behavior. Jackson et al. (2008) and Jackson and

Zenou (2015) provide comprehensive summaries. Galeotti et al. (2020) employs a principal

component approach to analyze how interventions that change characteristics impact out-

comes and develops strategies for optimal interventions within network games. However,

they assume a unique equilibrium, whereas this paper focuses on models with multiple equi-

libria. Following the same setting, Sun et al. (2023) examines optimal interventions that

alter network structure, while Kor and Zhou (2022) considers interventions that affect both
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characteristics and network structure. Nonetheless, these studies differ from ours in terms of

utility specification, objective function, and the definition of the action space.

This paper can be viewed as a specific instance of mechanism design, where treatments

are allocated to incentivize units’ equilibrium behavior towards achieving desired objectives.

Closely related is Morris et al. (2024), which characterizes the set of outcomes achievable

from the smallest equilibrium, referred to as the smallest implementable outcome, in a su-

permodular game. Moreover, within a convex potential game, they show that the optimal out-

come—realized by implementing information to maximize the smallest equilibrium—results

in all players selecting the same action. While our implementation approach differs, the lower

bound of the set-identified social welfare in this paper is similar in concept to these smallest

implementable outcomes. However, it is more complex to characterize this set as the number

of players increases. Additionally, Morris et al. (2024) leaves open the question of which

implementation strategies are needed to achieve these outcomes, a gap this paper addresses.

Outline. The rest of this paper proceeds as follows: Section 2 introduces the game

setting and the solution concept. Section 3 discusses counterfactual analysis. Section 4

focuses on treatment allocation and implementation. Section 5 presents theoretical results

related to the implementation of our proposed method. We apply our proposed method to the

Indian micro- finance data, which is studied by Banerjee et al. (2013), and demonstrate its

performance in Section 6. Section 7 extends our analysis to the complete information setting.

Section 8 concludes. All proofs and derivations are shown in Appendix B to Appendix E.

2 Model

2.1 Setup

Let N = {1, 2, ..., N} be the target population. Each unit i has a K-dimensional vector of

characteristics Xi observable to the researcher. Xi is assumed to have bounded support, and

we standardize the measurements of Xi to be nonnegative, such that Xi ∈ X ∈ RK
+ . Let

X = [X⊺
1 , ..., X

⊺
N ] ∈ XN be an N ×K matrix whose ith row contains the characteristics of unit

i, and let XN represent the set of all such possible matrices X . Let D = {D1, ..., DN} ∈ D =

{0, 1}N be a vector of binary treatment allocations. For i ∈ N , Di = 1 if unit i is treated and

Di = 0 if not.

The social network is represented by an N × N binary adjacency matrix, denoted by

G = {Gij}i,j∈N ∈ G = {0, 1}N×N . G is assumed to be fixed and exogenous, irrelevant to

treatment allocation. Gij = 1 indicates that units i and j are connected, while Gij = 0

indicates that they are not. Let Ni := {j : Gij ̸= 0} denote the set of neighbors of unit
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i. N denotes the maximum number of edges connected to any unit in the network (i.e.,

N = maxi |Ni|), while N denotes the minimum (i.e., N = mini |Ni|). We adopt the convention

of no self-links (i.e., Gii = 0 for all i ∈ N ). This framework can accommodate both directed

networks, where Gij and Gji can differ, and undirected networks, where Gij = Gji for all

i, j ∈ N . Additionally, we allow the strength of spillover effects to depend not only on the

adjacency matrix Gij but also on the covariates and treatment statuses of units i and j.

We consider a counterfactual equilibrium social welfare in the context of a large simul-

taneous decision game. We use the following notation for our simultaneous decision game.

Yi ∈ Y = {0, 1} denotes unit i’s decision. The decision vector for all units is denoted by

Y = (Y1, ..., YN) ∈ YN , with y ∈ {0, 1}N representing the realized decision outcomes. Addi-

tionally, we define a vector of idiosyncratic shocks ε = {ε1, ..., εN}, where εi is the shock for

unit i ∈ N .

The game, denoted by Γ, comprises:

Players: A set of individuals that we label N , a social planner;

Payoffs: The preferences (utilities) of units are denoted by {Ui(y,X,D,G; θ)}Ni=1. Follow-

ing de Paula and Tang (2012) and Galeotti et al. (2020), we endow units with a quadratic

utility function

Ui(y,X,D,G; θ) = (αi − εi)yi +
∑
j ̸=i

βijyiyj.

where αi := αi(X,D,G) and βij := βij(X,D,G) are heterogeneous functions that capture

unit i’s individual utility and spillover utility. The utility of Yi = 0 is normalised to 0.

Given a network G, covariates X = (X1, ..., XN), and a treatment allocation D = (D1, ..., DN),

the coefficient αi on unit i’s choice depends upon their own covariates and treatment status

as well as those of all of their neighbors; the coefficient βij multiplying the quadratic term

yiyj depends upon their own covariates and treatment status as well as those of unit j. Since

the choice variable is binary, if αi and βij are unconstrained, then this specification of the

utility function is without loss of generality. We endow these utilities with certain properties,

which are specified in Section 2.3 and Section 4.1.1.

Information: The literature delineates two information environments: complete informa-
tion and incomplete information. In a complete information setting, players can observe all

characteristics of other units. This setting is studied in Tamer (2003), Ciliberto and Tamer

(2009), Bajari et al. (2010b) and Chesher and Rosen (2020). Since we consider a large net-

work setting, it may not be plausible for players to have perfect information about all the

other units (Ridder and Sheng, 2020). Therefore, in our headline setting, we follow Brock
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and Durlauf (2001), Aguirregabiria and Mira (2007), Bajari et al. (2010a), and de Paula and

Tang (2012), and consider an incomplete information setting. All units and the social plan-

ner are assumed to observe characteristics X and the network structure G, but the vector of

idiosyncratic shocks of units is assumed to be unobservable. The realization of εi is unit i’s

private information. All players are assumed to have a common belief about the distribution

of ε. Formally,

Assumption 1. The set of idiosyncratic shocks ε must satisfy the following conditions:

(i) The {εi}Ni=1 is i.i.d. with a known distribution Fε, which is common knowledge for all the
players;

(ii) The distribution of εi has a density fε, which is bounded above by a constant τ . In addition,
fε is continuously differentiable;

(iii) εi ⊥ X,G,D for all i ∈ N .

These assumptions are standard in the literature (de Paula and Tang, 2012; Leung, 2015;

Ridder and Sheng, 2020). The third assumption can be replaced by a conditional indepen-

dence assumption if we assume that Fε|X,D,G(·|X,D,G) is known.

Actions: At the beginning of the game, the social planner assigns treatment Di to each unit

i ∈ N to maximize the planner’s welfare:

WX,G(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G

]
, (1)

subject to the capacity constraint κ (i.e.,
∑N

i=1 Di ≤ κ). The expectation in Eq.1 is taken

with respect to choices Y given the observed covariates X, network structure G, and the

treatment allocation rule D4. The function gi : YN×XN×D×G → R allows social welfare to

deviate from the utilitarian welfare function, which corresponds to gi(·) = Ui(·). We explore

two common types of social welfare functions: Utilitarian welfare, and Engagement welfare.

Section 3 discusses each in detail.

After receiving their allocated treatment, units choose action Y simultaneously to maxi-

mize their own payoff given the realization of ε. With complete information unit i’s decision

rule would be:

Yi = 1
{
Ui(1, Y−i, X,D,G) ≥ 0

}
, ∀i ∈ N .

4With multiple equilibria and no assumption imposed on the equilibrium selection mechanism, the expec-
tation becomes a set in which each element is conditional on a specific equilibrium selection mechanism. This
concept will be further formalized in Section 2.2.
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However, since unit i only has partial information about other units, the realization of Y−i

is not observed. Therefore, units make decisions that are best responses given their belief

about other units’ decisions given the public information and their own type. Formally, in the

incomplete information setting,

Yi = 1
{
Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
≥ 0

}
, ∀i ∈ N . (2)

with

Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
= αi +

∑
j ̸=i

βijEε

[
Yj|X,D,G, εi

]
− εi.

As ε is i.i.d. by Assumption 1, this can be simplified to:

Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
= αi +

∑
j ̸=i

βijEε

[
Yj|X,D,G

]
− εi. (3)

We have now established the game setting. To further elaborate, we introduce additional

notation. Consider the action set Y, defined as {0, 1}. This set is a totally ordered set,

endowed with the usual ordering relation ≤, characterized by reflexivity, antisymmetry, and

transitivity5. The action profile space YN , formed as a direct product of Y, also constitutes a

partially ordered set (Topkis, 1998, §Example 2.2.1). It is equipped with the product relation
≤, where for any y, y′ ∈ Y, we have y ≤ y′ if and only if yi ≤ y′i for all i ∈ N . Given that YN

is a partially ordered set, we can define a greatest and least element on it. A strategy profile y

is a greatest (least) element on YN if y ≥ y′ (y ≤ y′) for all y′ ∈ YN . In addition, The join of

any two elements y, y′ ∈ YN , written as y ∨ y′, is defined as inf{x ∈ YN : x ≥ y, x ≥ y′}. The

meet, denoted as y∧ y′, is symmetrically defined as: sup{x ∈ YN : x ≤ y, x ≤ y′}. In addition,

a partially ordered set is called a lattice if the join and meet of any pair of elements exist. A

lattice is a complete lattice if it contains the supremum and infimum of any subsets of it.

2.2 Equilibrium

As the game introduced in the previous section features incomplete information, it is a

Bayesian game (Harsanyi, 1967), and its Nash equilibria are Bayesian Nash equilibria

(BNE). We use the pure strategy BNE solution concept. This is defined as:

Definition 2.1. (Pure Strategy Bayesian Nash equilibrium) Let Y be the set of all possible

decision rules {yi(εi)}Ni=1, where yi(εi) : R→ {0, 1} specifies unit i’s choice for each realization

5Reflexive: ≤ is reflexive if y ≤ y, for all y ∈ YN . Antisymmetric: ≤ is antisymmetric if y ≤ y′ and y′ ≤ y
implies y = y′. Transitive: if y ≤ y′ and y′ ≤ y′′ implies y ≤ y′′.
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of their private information εi. A pure strategy BNE of game Γ is a strategy profile (y∗1, ..., y
∗
N)

such that, for every i ∈ N ,

Eε[Ui(y
∗
i , y

∗
−i)|X,D,G, εi] ≥ Eε[Ui(y

′
i, y

∗
−i)|X,D,G, εi],

for all y′i ∈ Y, where Eε[Ui(·)|X,D,G, εi] is defined as in Eq.3.

Following Bajari et al. (2010a), we represent the Bayesian Nash equilibrium in the con-

ditional choice probability space. Denote the conditional choice probability (CCP) profile as

σ(X,D,G) = {σi(X,D,G)}Ni=1. An element of the CCP profile:

σi(X,D,G) := Eε[Yi|X,D,G]. (4)

Combining the specification of Yi (Eq.2 and Eq.3) with Eq.4, we have:

σi(X,D,G) =

∫
1
{
αi +

∑
j ̸=i

βijσj(X,D,G) ≥ εi

}
dFε. (5)

Let Ω be a mapping from [0, 1]N to [0, 1]N that collects Eq.5 for all units. This is a non-linear

simultaneous equation system. An equilibrium CCP profile σ∗(X,D,G) is a fixed point of this

simultaneous equation system:

σ∗(X,D,G) = Ω(σ∗(X,D,G)). (6)

This is one representation of the Bayesian Nash equilibrium. Alternatively, given an equilib-

rium CCP profile σ∗, a fixed X,D,G, and a realization of ε, we can define a Bayesian Nash

equilibrium {y∗i }Ni=1 as:

y∗i = 1
{
αi +

∑
j ̸=i

βijσ
∗
j (X,D,G) ≥ εi

}
, ∀i ∈ N . (7)

As the right hand side of Eq.5 is equal to Fε(αi +
∑

j ̸=i βijσj), the existence of a fixed point is

guaranteed by the Brouwer fixed-point theorem (Brouwer, 1911). As noted in Echenique and

Komunjer (2009), this type of simultaneous equation system can have multiple fixed points.

In particular, games with strategic complementarity, as in our setting, tend to have a large

number of equilibria (Takahashi, 2008). Let Σ := {σ : σ = Ω(σ)} denote the set of equilibria.

Any equilibrium outcome in this set is a reasonable prediction. In other words, for a given

X,D,G and θ, the model predicts a set of equilibrium outcomes σ∗. If we do not assume

an equilibrium selection mechanism, this multiplicity introduces incompleteness (Jovanovic,
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1989). Incompleteness dramatically increases the difficulty of counterfactual analysis since

the model can only identify a set of equilibrium CCP profiles Σ with a newly implemented

policy (i.e., a new treatment allocation rule D).

With a newly implemented policy, the realized equilibrium depends on an equilibrium

selection mechanism. Let ξ : Σ → [0, 1] denote the probability distribution over equilibria,

and let ∆(Σ) := {ξ :
∑

σ∗∈Σ ξ(σ∗) = 1} denote the set of all the probability distributions. The

equilibrium selection mechanism is a mapping from the public information (i.e., X,D,G) to

one particular element of ∆(Σ). Formally:

Definition 2.2. (Equilibrium Selection Mechanism) The equilibrium selection mechanism

is denoted by λ(·|X,D,G) and the equilibrium selection mechanism space is defined as:

Λ := {λ : XN ×D × G → ∆(Σ)}.

If the equilibrium selection mechanism is observable, the conditional choice probability

becomes complete by conditioning on λ. Since

Pr[Yi = 1|X,D,G, λ] =
∑
σ∗∈Σ

λ(σ∗|X,D,G)σ∗
i , ∀i ∈ N . (8)

There are two main difficulties in characterizing the equilibrium outcome under a newly

implemented policy. First, the equilibrium selection mechanism is not directly observable.

The identification of an equilibrium selection mechanism from data is studied in Bajari et al.

(2010b) and Aguirregabiria and Mira (2019), among others. This is useful in the identifica-

tion of parameters, since parameter values are independent of λ. For counterfactual analysis,

however, there is no guarantee that the equilibrium selection mechanism remains fixed when

X,D,G changes. The second difficulty is that the cardinality of Σ increases dramatically with

the number of units in the network. Hence, it is not feasible to evaluate the summation in

Eq.8. To improve the tractability of counterfactual analysis, we focus on a game with strategic

complementarity.

2.3 Complementarity and Supermodular Games

Strategic complementarity in games implies that, given an ordering of strategies, a player’s

choice of a higher action incentivizes other players to similarly choose a higher action (Bu-

low et al., 1985). In economics, complementarity is an important and empirically relevant

concept (Molinari and Rosen, 2008). It has many policy applications, such as price setting (Al-

varez et al., 2022), house prices (Guren, 2018), technology adoption (Alvarez et al., 2023),
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as well as the additional examples given in Molinari and Rosen (2008), Lazzati (2015), and

Graham and Pelican (2023). The theoretical literature has established that games with strate-

gic complementarities have robust dynamic stability properties (Milgrom and Roberts, 1991;

Milgrom and Shannon, 1994). This means they converge to the set of Nash equilibria even

with simple learning dynamics (Fudenberg and Levine, 1998; Chen and Gazzale, 2004).

Topkis (1998) shows that strategic complementarity and supermodularity are equivalent in

finite strategy games. The mathematical property supermodularity simplifies analysis. It cap-

tures the idea of increasing returns between the choice variables. Therefore, to analyze the

Bayesian Nash equilibrium of our game, we characterize it as a supermodular game. The

definition of supermodular game is:

Definition 2.3. Supermodular Game (Milgrom and Roberts, 1990): A game Γ is a super-

modular game if, for each i ∈ N :

(i) Strategy set Y is a complete lattice;

(ii) Payoff Ui : YN → R is order upper semi-continuous in yi (for fixed y−i) and order

continuous in y−i (for fixed yi), and has a finite upper bound;

(iii) Payoff Ui is supermodular in yi (for a fixed y−i);

(iv) Payoff Ui has increasing differences in yi and y−i.

The definitions of a supermodular function and increasing differences are:

Definition 2.4. Supermodular Function: A function U : YN → R is supermodular on YN if

for all y, y′ ∈ YN :

U(y) + U(y′) ≤ U(y ∧ y′) + U(y ∨ y′).

Definition 2.5. Increasing Differences: A function U : YN → R has increasing differences if

for all y−i < y′−i and yi < y′i:

U(yi, y
′
−i)− U(yi, y−i) ≤ U(y′i, y

′
−i)− U(y′i, y−i).

Topkis (1998, §Chapter 2.6.1) shows that, for a real valued utility function, increasing

differences is equivalent to complementarity between units’ decisions. Given the definition of

a supermodular game above, Ui is a supermodular function on YN if and only if Ui exhibits

increasing differences on YN (Topkis, 1998, §Theorem 2.6.1; §Corollary 2.6.1). Therefore,

we have equivalence between complementarity and supermodularity in our game. Topkis’s
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characterization theorem (Topkis, 1978, §Section 3) shows that

∂2Ui(y)

∂yi∂yj
≥ 0, ∀j ̸= i

is a necessary and sufficient condition to guarantee a utility function is a supermodular func-

tion on YN . In our specification, this is equivalent to βij ≥ 0 for j ̸= i.

Assuming that βij ≥ 0 for j ̸= i, our game is a supermodular game since {0, 1}N is a

complete lattice and our utility function is continuous. Tarski’s fixed point theorem (Tarski,

1955, §Theorem 1) then guarantees the existence of pure strategy Bayesian Nash equilibrium

y∗. In particular, there always exists a least BNE y∗ and a greatest BNE y∗ (Milgrom and

Roberts, 1990, §Theorem 5). Tarski’s fixed point theorem can be applied to the conditional

choice probability space instead of the strategy profile space to obtain an equivalent result.

[0, 1]N is also a complete lattice, and Ω : [0, 1]N → [0, 1]N in Eq.6 is an increasing function

given βij ≥ 0. Therefore, we have a maximal equilibrium CCP profile σ∗ and a minimal

equilibrium CCP profile σ∗. In section 3, we show how strategic complementarity simplifies

counterfactual analysis.

3 Counterfactual Analysis for the Target Population

The goal of this paper is to obtain a treatment allocation that maximizes the equilibrium social

welfare of the target population. To achieve this, we first need to characterize the counter-

factual equilibrium social welfare if we implement a policy in the target population, which

may have a different network structure to the training sample. As the equilibrium selection

mechanism is unobservable, the literature typically obtains a point-identified prediction for

welfare by assuming how counterfactual policies affect the equilibrium selection mechanism.

For example, Jia (2008) assumes that a specific equilibrium is always played, Aguirregabiria

and Mira (2010) assumes the equilibrium remains the same after intervention, and Canen

and Song (2020) assumes that the equilibrium selection mechanism is invariant to the inter-

vention. However, it is impossible to test the appropriateness of these assumptions given the

existing method. In contrast, following Tamer (2003), we are fully agnostic about how policy

changes the equilibrium selection mechanism. In other words, the question we focus on is: If
we are agnostic about the equilibrium selection mechanism, what counterfactual outcome does
the model predict?
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Recall that our social welfare function is:

WX,G(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G

]
. (9)

With multiple equilibria and no assumption imposed on the equilibrium selection mechanism,

our model provides a set-valued equilibrium probability distribution fot Y conditional on

X,D,G. Therefore, the expectation in Eq.9 is also a set, with each element an expectation

conditional on a particular λ. Formally,

WX,G(D) = {WX,G,λ(D) : λ ∈ Λ},

where

WX,G,λ(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G, λ

]
.

This paper considers counterfactual analysis for two standard social welfare functions.

• Engagement Welfare: In certain scenarios, a social planner may prioritize goals other

than maximizing utilitarian welfare. For instance, in tax auditing, the planner might

individualize the assignment of tax audits. Generally, units prefer not to pay taxes,

so if maximizing utilitarian welfare were the sole objective, no one would be audited.

In this case, a more appropriate target might be the average rate of tax compliance6.

Engagement welfare is defined as

WX,G,λ(D) =
1

N

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

• Utilitarian Welfare at Equilibrium: Utilitarian welfare at equilibrium is the average

of the expected utilities of individuals when the system is in equilibrium. This measure

is often targeted in policy interventions as it comprehensively reflects overall societal

benefit (e.g., Brock and Durlauf, 2001; Galeotti et al., 2020). An example where the

utilitarian welfare target is used is job training programs. Here policymakers allocate

limited training resources to unemployed workers to assist them in finding new jobs

6This concept of welfare can be broadened to include situations where the policymaker aims to influence
outcomes indirectly affected by individual decisions, such as total tax revenue, which depends on individuals’
decisions to pay taxes.
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(Bloom et al., 1997). In such scenarios, social welfare is defined as:

WX,G,λ(D) =
1

N

N∑
i=1

Eε

[
Ui(Y,X,D,G) + εiYi|X,D,G, λ

]
, (10)

which only depends on the expectation of the deterministic component in the utility

function7. Plugging in our utility function specification, we have:

WX,G,λ(D) =
1

N

N∑
i=1

αi Pr(Yi = 1|X,G, λ) +
1

N

N∑
i=1

∑
j ̸=i

βij Pr(YiYj = 1|X,D,G, λ).

Consider the engagement welfare function. We define bounds for equilibrium welfare, given

covariates X, network G and an arbitrary treatment allocation rule D, as:

WX,G,λ(D) ∈
[
inf
λ∈Λ

WX,G,λ(D), sup
λ∈Λ

WX,G,λ(D)
]
.

Accordingly, let λ be the least-favorable equilibrium selection mechanism and λ the most-

favorable equilibrium selection mechanism :

λ := arg inf
λ∈Λ

WX,G,λ(D), λ := arg sup
λ∈Λ

WX,G,λ(D).

In general it is not possible to solve for these two extreme points. There are two ob-

stacles. First, the number of equilibria increases rapidly with the number of units in the

network. Evaluating the expectation with respect to the joint distribution of Y thus becomes

infeasible. Second, the space of the equilibrium selection mechanisms Λ may be infinite. This

complicates any search for the infimum and supremum λ across Λ.

In the existing literature, counterfactual analysis (Ciliberto and Tamer, 2009) often fo-

cuses instead on the conditional choice probability (CCP). With no assumptions on the equi-

librium selection mechanism, the bounds of the counterfactual CCP are:

Pr(Yi = 1|X,D,G, λ) ∈
[
inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ), sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ)
]
.

These bounds can be computed using off-the-shelf methods (e.g., Sheng (2020) for complete

information settings). However, exact bounds of social welfare cannot be directly obtained

7Brock and Durlauf (2001, Section 4) show that introducing a shock term in Eq.10 would render the model
analytically intractable.
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from the bounds of the CCP. This is because:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≤
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ), (11)

and

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≥
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ). (12)

That is, the lower (and upper) bound of unit i’s conditional choice probability may be ob-

tained under a different equilibrium selection mechanism to the bound for some unit j ̸= i.

Therefore, bounds for social welfare obtained by summing the bounds on the CCP will gener-

ally be loose. However, we show that Eq.11 and Eq.12 hold with equality in a supermodular

game. Formally,

Theorem 3.1. (Engagement Welfare) For a supermodular game, the least favorable equilib-
rium selection rule λ and the most favorable equilibrium selection rule λ are:

λ := δσ∗ , λ := δσ∗ ,

where δσ is the Dirac measure on the set of equilibria Σ. In addition, the following conditions
are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

A proof of Theorem 3.1 is provided in Appendix C.1. This new result characterizes the

most and least favorable equilibrium selection rules for aggregate social welfare. This ap-

proach enables us to leverage Tarski’s fixed point theorem, which significantly reduces the

computational burden by obviating the need to calculate all possible Nash equilibria. Fur-

thermore, it establishes equivalence between the identified set of aggregate social welfare

and the aggregation of identified sets of conditional choice probabilities, concepts studied in

Sheng (2020) and Gu et al. (2022). This equivalence is not guaranteed to hold in the absence

of complementarity. When there are values of ε with unordered multiple equilibria, such as

(Y1 = 1, Y2 = 0) and (Y1 = 0, Y2 = 1) in the two-unit case, the process of identifying the least

and most favorable λ is significantly more complicated. Intuitively, the bounds coincide be-

cause strategic complementarity guarantees the existence of a least BNE and a greatest BNE
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for all the values of ε. Since the social welfare function is a monotonically increasing func-

tion of σ, it achieves its lower bound at the least equilibrium σ∗ and its upper bound at the

greatest equilibria σ∗. By definition, the conditional choice probability Pr(Yi = 1|X,D,G, λ)

also achieves its lower bound under σ∗ and its upper bound under σ∗ . The same argument

can be applied to utilitarian social welfare to obtain the following corollary.

Corollary 3.1. (Utilitarian Welfare at Equilibrium) Under Assumption 1, given the spec-
ification of our utility function, the predicted set of the expected utilitarian welfare under a
counterfactual policy D is given as:

WX,G,λ(D) ∈
[ 1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j ,

1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j

]
,

where

f(αi) =

Pr(Yi = 1|X,D,G, λ) if αi > 0

Pr(Yi = 1|X,D,G, λ) if αi ≤ 0.

A proof of Corollary 3.1 is provided in Appendix B.1. This result implies that it is sufficient

to compute the minimal and maximal equilibrium CCP profile for the utilitarian welfare in

the incomplete information setting. This result does not hold in the complete information

setting, where we provide an alternative approach to compute the bounds of the identified

set.

Remark 3.1. The infimum and supremum of the planner’s welfare, calculated over the

equilibrium selection mechanism, are equivalent to the Choquet integral (see Denneberg,

1994 and Gilboa, 2009) of the planner’s welfare with respect to the capacity and its con-

jugate. The capacity v and its conjugate v∗ are non-additive probability measures defined

on the set of equilibrium Σ. In our case, Pr(Yi = 1|X,D,G, λ) is equivalent to Choquet

integration with respect to the capacity v(A) where A = {y∗ : y∗i = 1}. Analogously,

Pr(Yi = 1|X,D,G, λ) is equivalent to Choquet integration with respect to the conjugate v∗(A)

where A = {y∗ : y∗i = 1}. We refer to Kaido and Zhang (2023) for the definition of capacity

and a more detailed discussion on this topic. Despite the complexity typically associated with

Choquet integration, which often requires approximate solution by simulation methods, our

method provides a closed-form expression for the identified set which can be solved without

numerical error. Moreover, the applications of Choquet integration extend to robust Bayesian

analysis to manage multiple priors (see Chamberlain (2000a) and Giacomini et al. (2021)),

which is analogous to a setting with multiple equilibria.
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The details of the computation of the maximal and minimal equilibrium conditional choice

probabilities (CCPs) are discussed in Section 4.1.3. The arguments above apply not only to

the counterfactual analysis of treatment allocation policies but also to policy interventions

that alter covariates or the network structure.

4 Treatment Allocation

Our model allows for multiple equilibria, but can only predict a set of possible equilibrium

outcomes, denoted as WX,G(D). Consequently, the expected value calculation that deter-

mines social welfare is not well-defined without specifying the equilibrium selection mecha-

nism. Drawing on game theory (Morris et al., 2024) and robust decision theory (Chamber-

lain, 2000a), we apply the maximin welfare criterion to select a treatment allocation rule.

This approach involves a social planner opting for choices that lead to higher welfare while

preparing for the worst-case scenario of the least favorable equilibrium. Essentially, the plan-

ner anticipates the minimal equilibrium will be realized. For example, Segal (2003, Section

4.1.3) discusses scenarios in contracting where the worst-case equilibrium corresponds to the

Pareto-efficient outcome for the parties involved. Moreover, in settings where action 0 is the

default, games exhibiting strategic complementarity tend to converge toward their minimal

equilibrium.

The planner chooses D to maximise welfare under the assumption that the minimal equi-

librium, conditional on the chosen D, will be realized. We denote the set of feasible alloca-

tions by Dκ := {D ∈ D :
∑N

i=1Di ≤ κ}. Formally:

D∗ = arg max
D∈Dκ

min
λ∈Λ

WX,G,λ(D). (13)

Recall that, by Theorem 3.1, the lower bound of equilibrium social welfare equals the sum-

mation of individual welfares. Thus, the maximin welfare optimisation problem simplifies

to:

max
D∈Dκ

WX,G,λ(D),

where WX,G,λ(D) is the social welfare function evaluated at the minimal equilibrium. This for-

mulation converts the maximin welfare problem into a straightforward maximization prob-

lem, providing a clear framework for solving the optimal treatment allocation problem.
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4.1 Implementation

4.1.1 Identification

The preceding discussion has assumed that true parameter values are observed. To imple-

ment our proposed method, we first describe the identification of structural parameters using

a training sample . Details on the estimation procedure are provided in Section 4.1.2.

The discussion of counterfactual analysis in Section 3 makes no assumptions about the

functional form of parameters {αi}i∈N and {βij}i,j∈N . However, observable data is limited

to units’ choices, covariates X, the network structure G, and a predetermined treatment

allocation D. In practice, we are restricted by what it is possible to identify given this data.

For identification, we follow Bajari et al. (2010a) and adopt the inverse-CDF procedure8.

Let εn be the private information in the training data, which is distinct from ε in the target

population. Recall from Eq.7 that, given an equilibrium conditional choice probability profile

in the training data σdata, unit i chooses their actions according to the decision rule

Y n
i = 1

{
αi +

∑
j ̸=i

βijσ
data
j ≥ εni

}
, ∀i ∈ N .

The equilibrium CCP profile is thus:

σdata
i =

∫
1
{
εni ≤ αi +

∑
j ̸=i

βijσ
data
j

}
dFεn = Fεn

[
αi +

∑
j ̸=i

βijσ
data
j

]
. (14)

Taking the inverse of the CDF of ε on both sides in Eq.14 yields:

F−1
εn (σdata

i ) = αi +
∑
j ̸=i

βijσ
data
j . (15)

Even assuming that the equilibrium CCP profile in the training data is observable, identifying

all the parameters in Eq.15 remains challenging. Determining all utility parameters involves

solving for N ×N unknown parameters on the right-hand side of the above equation. How-

ever, the left-hand side of Eq.15, only provides information about N scalars. Given these

limitations, we define our utility function as follows to ensure identifiability and allow for the

8This approach builds on Hotz and Miller (1993) and Aguirregabiria and Mira (2007).
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analysis of general treatment effects:

Ui(y,X,D,G) = yi(

αi︷ ︸︸ ︷
θ0 + θ1Di +X⊺

i θ2 +X⊺
i θ3Di +

1

|Ni|
∑
j ̸=i

θ4mijGijDj −εi)

+
∑
j ̸=i

1

|Ni|
(θ5 + θ6DiDj)mijGij︸ ︷︷ ︸

βij

yiyj,

(16)

where mij = m(Xi, Xj) is a (bounded) real-valued function of personal characteristics. mij

measures the distance between unit i’s characteristics and unit j’s characteristics; the spillover

effect is weighted by how similar two units appear. The utility that unit i derives from an

action is the sum of the net benefits that they accrue from their own actions and from those

of their neighbors. We assume that a unit’s utility is only affected by the actions of their direct

neighbors, not one-link-away contacts. The payoff of action Yi = 1 has six components. When

unit i chooses action Yi = 1, they receive utility θ0 irrespective of their allocated treatment.

They also receive additional utility θ1Di depending upon their own treatment status. Their

utility also includes a heterogeneous component X⊺
i (θ2 + θ3Di), which depends upon their

characteristics Xi. Next, there is a spillover effect from the action of unit j. If unit j is a

neighbor of unit i that receives treatment, then this provides θ4mij additional utility to unit

i. The fifth and sixth components represent strategic complementarity. If unit j is a neighbor

of unit i and selects Yj = 1, then unit i’s payoff is increased by θ5mij The final component

corresponds to choice spillovers between neighbors who receive treatment. If both unit i and

unit j receive treatment and both choose action 1, unit i receives additional utility θ6mij.

Accordingly, the structural parameters θ are uniquely determined by the conditional choice

probabilities in the training sample, thus identifying the payoff function. This discussion pro-

vides only an informal overview of the identification process; a formal proof is available in

Bajari et al. (2010a).

4.1.2 Estimation

For estimation, we employ the two-step maximum likelihood estimation procedure of Leung

(2015). The first step involves estimating the equilibrium conditional choice probability from

the training data. In the second step, structural parameters are estimated by maximizing

the likelihood function given the estimated CCP profiles. To distinguish the training data

from the target population, we denote covariates as X = {Xi}ni=1, the treatment allocation

as D = {Di}ni=1, decisions as Y = {Yi}ni=1, and the network structure as G = {Gij}ni,j=1. In
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addition, let S = (X,D,G) .

Let {σ̂data
i }Ni=1 be the CCP in the training data. Given that the training dataset contains

only a single large network, two necessary conditions on the training data are required to

estimate the conditional choice probability: symmetric equilibrium9 (Leung, 2015) and net-
work decaying dependence condition (Xu, 2018). In general, each unit’s choice depends on all

public information across the network G (i.e., X and D of all units), although direct payoffs

may depend only on immediate spillovers. Under the network decaying dependence condition,

it is sufficient to consider only interactions within a relatively small distance.

Several estimation approaches have been proposed for CCP. These including the empirical

frequency estimator (Hotz and Miller, 1993), sieve estimation (Bajari et al., 2010a), flexible

logit estimation (Arcidiacono and Miller, 2011), and logit Lasso estimation (Chernozhukov

et al., 2022). Here we leave aside the question of the most suitable procedure. Instead, we

assume the existence of an estimator that satisfies the following statistical property:

Assumption 2. (Sub-Gaussian CCP Estimator) There exists a positive constant Cσ such that
for every t ≥ 0, we have

Pr
(
|σ̂data

i − σdata
i | ≥ t

∣∣S, σdata
)
≤ 2 exp

(
− nt2/C2

σ

)
, ∀i = 1, ..., n.

This assumption is satisfied by the empirical frequency estimator (Leung, 2015; Ridder

and Sheng, 2020) and logit/probit estimation10. The ultimate goal is to choose θ̂ that max-

imizes the likelihood function. As σdata is unobserved, we replace σdata in the likelihood

function with σ̂data and estimate θ by maximizing the quasi-likelihood function Q̂n(σ̂
data,θ).

Q̂n(σ̂
data,θ) =

1

n

n∑
i=1

Yi log
(
Fε(Ẑ

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Ẑ

⊺
i θ)

)
,

where

Ẑi =
(
1,Di,X

⊺
i ,X

⊺
iDi,

1

|Ni|
∑
j ̸=i

mijGijDj,
1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j ,

1

|Ni|
∑
j ̸=i

mijGijσ̂jDiDj

)⊺
. (17)

In addition, Zi denotes the vector of regressors that would be obtained if we replaced σ̂data
i

in Ẑi with the true conditional choice probability σdata
i .

9A symmetric equilibrium implies that two units will exhibit identical conditional choice probabilities if they
receive the same treatment, share identical covariates, and have comparable neighbors, specifically in terms of
the neighbors’ treatments and covariates.

10By Hoeffding’s inequality, the frequency estimator easily satisfies the Assumption 2. The probit/logit esti-
mator satisfies the Assumption 2 by the same argument as the second-stage MLE estimator in Section 5.
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4.1.3 Computation of Equilibria

After obtaining estimated parameters, we compute the set of equilibrium social welfare for

given covariates X, network structure G, and a treatment allocation D in the target pop-

ulation. The lower bound and upper bound of this set are: Pr(Yi = 1|X,D,G, λ; θ̂) and

Pr(Yi = 1|X,D,G, λ; θ̂) for all unit i ∈ N . We first rewrite these two conditional probabilities

as:

Pr(Yi = 1|X,D,G, λ; θ̂) =

∫
1
{
α̂i +

∑
j ̸=i

β̂ij Pr(Yj = 1|X,D,G, λ; θ̂) ≥ εi

}
dFε,

Pr(Yi = 1|X,D,G, λ; θ̂) =

∫
1
{
α̂i +

∑
j ̸=i

β̂ij Pr(Yj = 1|X,D,G, λ; θ̂) ≥ εi

}
dFε. (18)

From Theorem 3.1, Pr(Yi = 1|X,D,G, λ) achieves its upper (lower) bound when the equilib-

rium is σ∗ (σ∗) for all i ∈ N . Therefore,

Pr(Yi = 1|X,D,G, λ; θ̂) = ˆ̄σ∗
i , ∀i ∈ N ,

Pr(Yi = 1|X,D,G, λ; θ̂) = σ̂∗
i , ∀i ∈ N ,

where ˆ̄σ∗
i and σ̂∗

i represent the estimators for the maximal and minimal equilibria, respec-

tively. Hence, we need only compute the least and greatest equilibrium CCP profile. Topkis

(1979) provides an easily implemented algorithm that is guaranteed to converge to the least

and greatest equilibrium point of a supermodular game. Hold X,D,G fixed. To obtain the

greatest fixed point σ∗, begin with σ0 = {1, ..., 1}. Define a sequence {σt}Tt=0 : σt+1 = Ω(σt).

By construction, σ0 ≥ Ω(σ0). Since Ω(·) is an increasing function, Ω(σ0) ≥ Ω(σ1). Therefore,

σ0 ≥ σ1 ≥ ... ≥ σT . Suppose the iteration convergences on the M -th step. Then σM is the

greatest equilibrium since, for all the other σ∗, σM = ΩM(σ0) ≥ ΩM(σ∗) = σ∗.

With a symmetric argument, we can obtain the least equilibrium CCP profile. Here we

begin with σ0 = {0, ..., 0}. Define a sequence {σt}Tt=0 : σt+1 = Ω(σt). By construction, we

have σ0 ≤ Ω(σ0). Again, Ω(σ0) ≤ Ω(σ1). Therefore, σ0 ≤ σ1 ≤ ... ≤ σT . Suppose the iteration

convergences on the M -th step. Then σM is the least equilibrium since, for all the other σ∗,

σM = ΩM(σ0) ≤ ΩM(σ∗) = σ∗.

4.1.4 Greedy Algorithm

The previous sections describe the estimation of parameters and computation of the least

equilibrium CCP profile. In this section, we propose an algorithm to allocate treatment in a
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manner that maximizes the worst-case social welfare given the estimated parameters. Define

the empirical welfare function to be the welfare function with estimated structural parame-

ters:

W n
X,G,λ(D) = WX,G,λ(D; θ̂).

We seek to maximize the empirical welfare evaluated at the minimal equilibrium:

D̃ = arg max
D∈Dκ

W n
X,G,λ(D) = arg max

D∈Dκ

W n
X,G,σ∗(D). (19)

As shown in Eq.18, σ∗ is a solution to a non-linear simultaneous equation system. The con-

ditional choice probability σ∗
i of unit i depends non-linearly on the conditional choice prob-

ability σ∗
j and treatment assignment of their neighbors {Dj : j ∈ Ni}. Therefore, when

a treatment is assigned to one unit, it not only influences their behavior but also leads to

spillover effects through the network. Hence, Eq.19 is a complicated combinatorial opti-

mization problem. We propose a greedy algorithm11 (Algorithm 1) to solve this problem

heuristically.

Intuitively, our greedy algorithm assigns treatment to the unit that contributes most to

the welfare objective, and repeats this until a capacity constraint binds. Specifically, in each

round, Algorithm 1 computes the marginal gain of receiving treatment for each untreated

unit, evaluated at the least equilibrium CCP profile. We refer to the unit whose treatment

induces the largest increase in the worst-case welfare as the most influential unit for that

round.
11A greedy algorithm is a heuristic approach used in optimization problems; it makes a series of choices that

appear to offer the most immediate benefit, building a solution step by step to achieve locally optimal results.
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Algorithm 1: Maximizing Over Treatment Allocation Rules

Input: Weighted adjacency matrix G, covariates X, parameters θ̂, capacity constraint
κ

Output: Treatment allocation regime D̂G

Initialization: D ← 0N×1

if
∑N

i=1Di < κ then
for i with Di = 0 do

Di ← 1, denote new treatment vector as D′

σ∗(D′)← Computing the minimal equilibrium CCP profile given D′

∆i ← W n
X,G,σ∗(D′)−W n

X,G,σ∗(D)

end
i∗ ← argmaxi ∆i

Di∗ ← 1
else

D̂G ← D
end

5 Theoretical Analysis

In this section, we analyze the theoretical properties of our proposed treatment allocation

method. To simplify notation, denote the welfare of the targeted population WX,G,σ∗(D)

as W (D), and empirical welfare W n
X,G,σ∗(D) as Wn(D). In addition, let W (D∗) denote the

welfare of the target population at its global optimizer D∗, and W (D̂G) denote the welfare of

the target population welfare under the treatment allocation rule obtained by our proposed

method. Let the regret of the proposed treatment allocation policy be:

R(D̂G) := max
D∈D

W (D)−W (D̂G).

We evaluate the performance of our proposed treatment allocation method using expected
regret, which is defined as:

Eεn

[
R(D̂G)|S, σdata

]
:= max

D∈D
W (D)− Eεn

[
W (D̂G)|S, σdata

]
,

where the expectation Eεn [·] is taken with respect to the uncertainty in the training data12

conditional on the observed covariates X, treatment allocation D, network G, and equilibrium

12In the incomplete information setting, the unobserved variables represent units’ private information. If
the units in the training data are the target population, this may coincide for the training data and the target
population. In this case, the expectation in the regret is taken with respect to the uncertainty in the target
population. All discussions in this section are otherwise unchanged.
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σdata. This is because the randomness in our proposed method primarily arises from utiliz-

ing the estimated parameters, which involve only the training data. This criterion captures

the average welfare loss when implementing estimated policy D̂G relative to the maximum

feasible population welfare. Recall that Wn(D̃) is the maximum for empirical welfare. We

decompose regret into (eight terms):

W (D∗)−W (D̂G) = W (D∗)−Wn(D
∗) +Wn(D

∗)−Wn(D̃)

+Wn(D̃)−Wn(D̂G) +Wn(D̂G)−W (D̂G).

The first term measures the deviation arising from the use of the empirical social welfare

function. This term is bounded by:

W (D∗)−Wn(D
∗) ≤ sup

D∈D
|Wn(D)−W (D)|.

The second term measures the performance of the population welfare maximizer in the em-

pirical social welfare function. This term is bounded by:

Wn(D
∗)−Wn(D̃) ≤ 0.

The third term measures the loss caused by using a greedy algorithm to solve the optimization

problem. This is discussed in Section 5.3. The final term also measures regret introduced by

using the empirical social welfare function. This term is bounded by:

Wn(D̂G)−W (D̂G) ≤ sup
D∈D
|Wn(D)−W (D)|.

Combining all the above results, we conclude that expected regret is bounded by:

Eεn

[
R(D̂G)|S, σdata

]
≤ 2Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
+ Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
.

(20)

In the remainder of this section, we provide a non-asymptotic upper bound for expected

regret.

5.1 Sampling Uncertainty

For illustrative purposes, this section focuses on engagement welfare. We begin by address-

ing the regret resulting from the use of estimates in place of true parameters in the payoff
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function. This represents the sampling uncertainty of the proposed method. We impose the

following assumption on the parameter space:

Assumption 3. (Compactness) The parameter θ lies in a compact set Θ ⊆ Rdθ .

Assumption 3 is standard. We now proceed to characterize the sampling uncertainty

associated with using the empirical welfare function.

Lemma 5.1. Under Assumptions 1 and 3,

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1Eεn

[
∥θ̂ − θ0∥1

∣∣∣S, σdata
]
,

where C1 is a constant that depends on the distribution Fεn, and the supports of the parameter
space, the covariates space X , the network space G and the treatment allocation space D.

A proof of Lemma 5.1 is provided in Appendix B.2. Lemma 5.1 enables us to character-

ize the regret of maximizing the empirical welfare through the sampling uncertainty of the

structural parameter estimators (i.e., Eεn
[
∥θ̂ − θ∥1

∣∣S, σdata
]
). As there is no closed-form ex-

pression for MLE θ̂ in our case, we study the sampling uncertainty of θ̂ through the sampling

uncertainty of its associated empirical process

Eεn
[
|Gn(θ̂)−Gn(θ0)|

∣∣S, σdata
]
, (21)

where the empirical process Gn(θ) is defined as

Gn(θ) := M̂(θ)−M(θ),

M̂(θ) =
1

n

n∑
i=1

Yi log
(
Fε(Ẑ

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Ẑ

⊺
i θ)

)
,

and

M(θ) =
1

n

n∑
i=1

Eεn

[
Yi log

(
Fε(Z

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Z

⊺
i θ)

)∣∣∣S, σdata

]
.

Recall that Ẑi, as defined in Eq.17, serves as the regressor in our likelihood function. Since

we are using a quasi-likelihood ML estimator, the criterion function M̂(θ) is evaluated at the

estimated equilibrium in the data σ̂data. As a result, Eq.21 contains two sources of sampling

uncertainty: uncertainty from θ̂, and uncertainty from σ̂data. The difference between Gn(θ̂)

and Gn(θ0), is given by:

Gn(θ̂)−Gn(θ0) = M̂(θ̂)− M̂(θ0) +M(θ0)−M(θ̂). (22)
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To study the relationship between the estimator and its associated empirical process, we start

with a second-order Taylor expansion with Lagrange remainder for both terms in Eq.22:

M̂(θ0)− M̂(θ̂) =
1

2
(θ̂ − θ0)

⊺∇2
θM̂(θ́)(θ̂ − θ0), (23)

M(θ̂)−M(θ0) =
1

2
(θ̂ − θ0)

⊺∇2
θM(θ̀)(θ̂ − θ0), (24)

for some θ́ ∈ Rdθ and θ̀ ∈ Rdθ on the segment from θ0 to θ̂. Let η0max denote the largest

eigenvalue (in magnitude) of ∇2
θM̂(θ́), and η1max denote the largest eigenvalue of ∇2

θM(θ̀).

By Assumption 1 (ii), the Hessian matrix is symmetric. Therefore, by the Courant-Fischer
Theorem13, we can characterize the relationship between the parameter sampling uncertainty

and the deviation of the criterion function through:

M̂(θ0)− M̂(θ̂) ≤ 1

2
η0max∥θ̂ − θ0∥22. (25)

M(θ̂)−M(θ0) ≤
1

2
η1max∥θ̂ − θ0∥22. (26)

Combining Eq.22 with Eq.25 and Eq.26 yields

−(Gn(θ̂)−Gn(θ0)) ≤
1

2
(η0max + η1max)∥θ̂ − θ0∥22. (27)

Applying the mean value Theorem to the left-hand side of Eq.27, we have

Gn(θ̂)−Gn(θ0) = (θ̂ − θ0)
⊺∇θGn(θ̃), (28)

for some θ̃ ∈ Rdθ on the segment from θ0 to θ̂. Since θ̂ is the maximizer of M̂(·) and θ0 is the

maximizer of M(·), Eq.28 must be positive given the definition of Gn. By the Cauchy–Schwarz

inequality,

Gn(θ̂)−Gn(θ0) = (θ̂ − θ0)
⊺∇θGn(θ̃) = |(θ̂ − θ0)

⊺∇θGn(θ̃)| ≤ ∥θ̂ − θ0∥2∥∇θGn(θ̃)∥2. (29)

Combining Eq.27 and Eq.29,

−∥θ̂ − θ0∥2∥∇θGn(θ̃)∥2 ≤
1

2
(η0max + η1max)∥θ̂ − θ0∥22.

Assuming θ̂, an MLE estimator, lies in the interior of the parameter space, the Hessian matrix

13The largest eigenvalue ηmax of a C × C symmetric matrix M is given by the maximum Rayleigh quotient
(i.e., ηmax = maxA∈RC\{0}

A⊺MA
A⊺A ).
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∇2
θM̂(θ́) is negative definite. Therefore, η0max is negative. In addition, as θ0 is the maximizer

of M(θ), η1max also must be negative. Hence,

∥θ̂ − θ0∥1 ≤ dθ∥θ̂ − θ0∥2 ≤ −
2dθ

η0max + η1max

∥∇θGn(θ̃)∥2

≤ − 2dθ
η0max + η1max

∥∇θGn(θ̃)∥1.
(30)

If η0max and η1max did not depend on the sample size n (i.e., if they were constant), we could

study the finite sample properties of ∥θ̂ − θ0∥1 through the finite sample properties of the

empirical process ∇θGn(θ̃). However, the Hessian matrix is a function that depends on the

sample, so η0max and η1max also depend on n. This prevents us from characterizing the finite

sample properties of our estimator.

To overcome this difficulty, we establish a uniform constant upper bound for the largest

eigenvalue of the Hessian matrices, which guarantees their strict negativity. We denote the

uniform constant upper bound for the largest eigenvalue as maximal largest eigenvlaue and

as smallest To obtain a over all the possible samples, we impose the following three assump-

tions:

Assumption 4. (Shape) Fε(x) satisfies the condition: F ′
ε(x)

2

Fε(x)−1
< F ′′

ε (x) <
F ′
ε(x)

2

Fε(x)
for all x ∈ R.

Assumption 5. (Full Rank) Let Z denote [Z1, ..., Zn] and Ẑ denote [Ẑ1, ..., Ẑn]. We assume that
the matrices Z and Ẑ each have full row rank.

Assumption 6. (Non-Zero Treatment) There exists a constant Cd > 0 such that 1
n

∑n
i=1Di ≥

Cd, ∀n ∈ Z+.

Assumption 4 imposes a regularity condition on the shape of the CDF function. The

following are two examples of common distributions that satisfy this assumption:

• Logistic Distribution: The cumulative distribution function of the Logistic distribu-

tion is: Fε(x) = 1
1+exp(−x)

. The corresponding probability density function is: F ′
ε(x) =

exp(−x)
(1+exp(−x))2

. Finally, the second derivative of the CDF is: F ′′
ε (x) =

exp(−3x)−exp(−x)
(1+exp(−x))4

. There-

fore:

F ′
ε(x)

2

Fε(x)− 1
=
− exp(−x)− exp(−2x)

(1 + exp(−x))4
< F ′′

ε (x) <
exp(−3x) + exp(−2x)

(1 + exp(−x))4
=

F ′
ε(x)

2

Fε(x)
.

• Gaussian Distribution: Denote the Gaussian cumulative distribution function by Fε(x) =

Φ(x), its first derivative (the probability density function) by F ′
ε(x) = ϕ(x), and its sec-

ond derivative by F ′′
ε (x) = −xϕ(x). We aim to demonstrate that: F ′′

ε (x) <
F ′
ε(x)

2

Fε(x)
. Sub-

stituting the known forms of F ′
ε(x) and Fε(x), this inequality simplifies to: ϕ(x)

Φ(x)
> −x.
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For x ≥ 0, this inequality is always satisfied. When x < 0, we require that: ϕ(−x)
Φ(−x)

> x

for all x > 0. As ϕ(x)
Φ(x)

is the inverse Mills’ ratio,

ϕ(−x)
Φ(−x)

=
ϕ(x)

1− Φ(x)
= E[X|X > x] > x,∀x > 0.

By employing a symmetric argument, we find that: F ′
ε(x)

2

Fε(x)−1
< F ′′

ε (x).

Assumption 6 guarantees that the average number of treated units in the training data is non-

zero for any network size. Building on Eq.30, the following Lemma uniformly characterizes

the relationship between the sampling uncertainty of θ̂ and the sampling uncertainty inherent

in the empirical process Gn(·). Formally:

Lemma 5.2. (Sampling Uncertainty) Under Assumption 1, 4, 5, and 6, we have

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
,

where C2 is a constant that depends on the distribution Fεn, and the dimension and supports of
the parameter space, the covariates space X , the network space G and the treatment allocation
space D.

Proof of Lemma 5.2 is provided in Appendix B.3, where we establish a uniform upper

bound for the largest eigenvalues (i.e., η0max and η1max), termed the maximal largest eigen-

value. We show that this value is strictly negative and is encapsulated within the constant C2.

As C2 in Lemma 5.2 is a constant, characterising the concentration of the empirical process

∇θGn(θ̃) is sufficient. The next section does so.

5.2 Finite Sample Result

Recall we are using a two-step ML estimation procedure, so the first step of estimation in-

troduces additional sampling uncertainty through σ̂data. We incorporate these two layers of

sampling uncertainty in the following lemma:

Lemma 5.3. Under Assumption 1 to 5, we have

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤

C3 + C4

√
log(n)√

n
,

where C3 and C4 are constants that depend only on the support of covariates, the distribution of
ε, Cσ, the covariates space X , the network space G and the treatment allocation space D.
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A proof of Lemma 5.3 is provided in Appendix B.4. Lemma 5.3 analyzes the finite sample

property of the empirical process (i.e., Eεn
[
∥∇θGn(θ)∥1

∣∣S, σdata
]
). By combining the results

of Lemma 5.1, Lemma 5.2 and Lemma 5.3, we have our main theorem. This theorem char-

acterizes the sampling uncertainty of using the empirical welfare:

Theorem 5.1. (Sampling Uncertainty of Regret) Under Assumption 1 to 6, the sampling
uncertainty of the two-step MLE estimator is bounded by:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

In addition, the sampling uncertainty of the empirical welfare is bounded by:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.

A proof of Theorem 5.1 is provided in Appendix C.2. This new result characterizes the finite

sample properties of the sampling uncertainty that emerges when utilizing empirical welfare

in settings of strategic interaction. It shows that the regret associated with empirical welfare

converges at a rate influenced by the size of the network in the training data, as well as by

the covariates and the chosen distribution for private information. Furthermore, this result

characterizes the performance of the two-step maximum likelihood estimation from a finite

sample perspective. This analysis can be extended to general M-estimators, including the

Generalized Method of Moments and broader MLE frameworks.

5.3 Regret due to our Greedy Algorithm

Now, we evaluate the second term of Eq.20, which is the regret introduced by our greedy

algorithm,

Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
.

In general, the gap between a greedy optimizer and the global optimizer in terms of the

value of the objective function is unknown. For monotone non-decreasing submodular set

functions, Nemhauser et al. (1978) shows that a greedy algorithm achieves results within

(1− 1/e) of the global maximum value. Although our optimization problem does not involve

a submodular function, our empirical findings in Section 6 indicate that our greedy algorithm

performs well, a result echoed in other applications such as experimental design (Lawrence

et al., 2002). Building on these findings, Bian et al. (2017) provides a theoretical perfor-

mance guarantee for using a greedy algorithm on non-submodular functions by leveraging
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the submodularity ratio and curvature of the objective function.

Submodularity, the submodularity ratio, and the curvature of a set function f are defined

as follows.

Definition 5.1. (Submodularity) A set function is a submodular function if:∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ f(S ∪R)− f(S), ∀S,R ⊆ N .

Definition 5.2. (Submodularity Ratio) The submodularity ratio of a non-negative set func-

tion f(·) is the largest γ such that∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ γ[f(S ∪R)− f(S)], ∀S,R ⊆ N .

Definition 5.3. (Curvature) The curvature of a non-negative set function f(·) is the smallest

value of ξ such that

f(R ∪ {k})− f(R) ≥ (1− ξ)[f(S ∪ {k})− f(S)], ∀S ⊆ R ⊆ N ,∀k ∈ N \R.

Submodularity is similar to diminishing returns. It states that adding an element to a

smaller set yields a greater benefit than adding it to a larger set. Lovász (1983) highlights

that, in discrete optimization, submodularity plays a role analogous to convexity in contin-

uous optimization. The submodularity ratio measures how close a set function is to being

submodular (Das and Kempe, 2011). Curvature quantifies the extent to which a set function

deviates from being additive.

We evaluate the theoretical performance of our greedy algorithm in scenarios where the

treatment exerts both direct and indirect positive effects on equilibrium welfare, as indicated

by positive values for (θ̂1 + X⊺
i θ̂3) and θ̂5. Additionally, our empirical analysis explores a

variety of other scenarios, including those with a negative direct effect but a positive indirect

effect, among others. The results indicate that the algorithm performs well across a range of

conditions.

To characterize the submodularity ratio and curvature of the objective function, we first

represent it as a set function, which is a real-valued mapping defined over treatment alloca-
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tions sets, D ⊂ N (i.e., D = {i ∈ N : Di = 1}):

Wn(D) =
∑
i∈D

Fε

[
θ̂0+ θ̂1+X⊺

i (θ̂2+ θ̂3)+
1

|Ni|
∑

j∈D\{i}

(θ̂4+ θ̂6σj)mijGij +
θ̂5
|Ni|

∑
j∈N\{i}

mijGijσj

]
+

∑
k∈N\D

Fε

[
θ̂0 +X⊺

k θ̂2 +
θ̂4
|Nk|

∑
ℓ∈D

mkℓGkℓ +
θ̂5
|Nk|

∑
ℓ∈N\{k}

mkℓGkℓσℓ

]
.

Let γ denote the submodularity ratio. For a nondecreasing function, γ ranges between

[0, 1] and is 1 if and only if the function is submodular. Similarly, the curvature, denoted

by ξ, of a nondecreasing function ranges between [0, 1], and is 0 if and only if the function

is supermodular. As our objective function involves a system of simultaneous equations,

evaluating its curvature and submodularity ratio directly is challenging. Instead, we focus on

the upper bound for curvature and submodularity, and ensure that their values remain within

(0, 1). Combining this result with Bian et al. (2017, Theorem 1) of leads to:

Proposition 5.1. Under Assumption 1 and Assumption 3, the curvature ξ of Wn(D) and the
submodularity ratio γ of Wn(D) are in (0, 1). The greedy algorithm enjoys the following approx-
imation guarantee for the problem in Eq.19:

Wn(DG) ≥
1

ξ
(1− e−ξγ)Wn(D̃),

where DG is the treatment assignment rule that is obtained by Algorithm 1.

A proof is provided in Appendix C.3. This proof is similar to Kitagawa and Wang (2023a).

The first part of Proposition 5.1 implies that the performance guarantee is a non-trivial bound.

Although the curvature and submodularity ratio of our objective function are unknown, for a

particular application, it is possible to evaluate them empirically. As a consequence,

Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
≤ O(1)(1− 1

ξ
(1− e−ξγ)), (31)

where O(1) captures the Eεn [Wn(D̃)|S, σdata]. Combining Eq.31 with Theorem 5.1, we obtain

our main theorem:

Theorem 5.2. (Regret Bound) Let D∗ denote the maximizer of W (D) and DG be the assign-
ment vector obtained by Algorithm 1. Under Assumptions 1 to 5, given curvature ξ and submod-
ularity ratio γ, the regret is bounded from above by:

Eεn

[
R(D̂G)|S, σdata

]
≤ C1C2

C3 + C4 log(n)√
n

+O(1)(1− 1

ξ
(1− e−ξγ)). (32)
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Theorem 5.2 is our key result. The first term in Eq.32 characterizes the sampling un-

certainty, whose convergence rate depends on the network size. The dependence upon the

parameters in the utility function, network structure, and private information distribution are

shown implicitly via the terms C1 in Lemma 5.1, C5 and C6 in Lemma D.4, and C4 in Lemma

D.3. The second term comes from the use of a greedy algorithm, and converges to a constant.

6 Empirical Application

We illustrate our proposed method using data from Banerjee et al. (2013), which explores

the impact of information provision on microfinance adoption. Banerjee et al. (2013) studies

a microfinance loan program. This program was introduced by Bharatha Swamukti Samsthe

(BSS), a non-governmental microfinance institution in India, and implemented across 43

villages in Karnataka. BSS invited influential units, such as teachers, leaders of self-help

groups, and shopkeepers, to an informational meeting about the availability of microfinance

(the treatment). In total, 1262 units were assigned treatment, an average of 25.75 per village.

After the intervention, researchers collected data on the network structure and household

characteristics—including access to electricity, latrine quality, and per capita counts of beds

and rooms in all participating villages. The number of households in each village varied from

107 to 341, with 10 to 51 households per village receiving information about the program.

The program commenced in 2007, and the survey of microfinance adoption was completed

by early 2011. We treat each household’s decision to purchase microfinance as an equilibrium

outcome within a simultaneous decision network game.

We consider each village as a distinct target population. Structural parameters in the pay-

off function for each village are estimated separately using the two-step maximum likelihood

estimation (MLE) method of Leung (2015). This setup assumes that the training data, which

includes several villages, acts as a representative sample, with each village in the training

dataset mirroring a corresponding village in the target population in terms of covariates and

network structure.

In the first stage of our analysis, following Arcidiacono and Miller (2011), we estimate

the conditional choice probability using a flexible Logit approach (Chi-square goodness of fit

test result is provided in Appendix A). This includes each unit’s covariates and their second

powers, as well as the covariates of directly linked neighbors and interactions among these

covariates, which is under the network decaying dependence assumption (Xu, 2018). Al-

though our estimator allows for incorporating covariates from neighbors at higher levels of

linkage, we focus on directly linked neighbors’ covariates in this estimation. We treat these
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estimates as the true parameters and assess the presence of strategic complementarity in each

village. We find strategic complementarities in 16 of the 43 villages in the dataset14, which

are the focus of this exercise. We assume the policymaker utilizes all available covariates

to determine the treatment allocation mechanism. We assume that the private information

follows a logistic distribution, and we define the measure of closeness between units i and j

to be m(Xi, Xj) =
1

1+|Xi−Xj | .

6.1 Policy evaluation

In this application, the objective is to maximize engagement welfare, measured as the micro-

finance participation rate, evaluated at the minimal equilibrium under a treatment capacity

constraint (as in Eq.13) within our target population. To ensure comparability with the origi-

nal study, we set the capacity constraint equal to the number of treatments used by Bharatha

Swamukti Samsthe (BSS). We compare our method (‘Robust’) with two different treatment

allocation regimes: the allocation rule adopted by BSS in the original study (‘Original’), and

a random allocation rule (‘Random’).

Table 1 presents predicted village-level microfinance take-up probabilities under three

different treatment allocations. For each allocation rule, we report both the upper and lower

bounds of the prediction set. The first column lists the 16 villages that exhibit strategic

complementarities. The second column (Sample Avg.) contains the empirical average take-up

rate for these villages. The third column (Welfare under Original) shows the average adoption

rates for the original treatment allocation used by BSS. Four villages—Villages 2, 3, 6, and

12—exhibit multiple equilibria under this rule. To further assess our proposed method’s

performance, we generate 500 random treatment allocations within the capacity constraint

for each village. The average purchasing probability across these 500 allocations is reported

in the fourth column (Welfare under Random). Under random allocation, multiple equilibria

arise in Villages 2, and 9, highlighting that the occurrence of multiple equilibria can

vary with the allocation method used. The share of households adopting microfinance

according to the robust optimal treatment allocation is shown as Welfare under Robust, where

the multiple equilibria only presents in the Village 2.

Note first that the equilibrium average share of households adopting microfinance under

the original allocation closely tracks the observed data for all villages except for Village 7 15.

14The indices of those 16 villages in the original data set are: 1, 4, 6, 7, 12, 14, 17, 18, 20, 24, 25, 29, 31,
39, 40, and 41. To enhance clarity, we discard their original indices and re-label them as villages 1 to 16.

15The goodness of fit test indicates that the estimation for Village 7, referred to as Village 17 in Table 2,
may not adequately fit the data, potentially due to inaccuracies in the first-stage Conditional Choice Probability
(CCP) estimation.
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Village Sample Avg. Welfare under Welfare Gain∗

Original Random Robust Level Percentage

1 0.24 [0.25, 0.25] [0.20, 0.20] [0.41, 0.41] 0.16 66%
2 0.08 [0.04, 0.07] [0.03, 0.04] [0.13, 0.16] 0.10 270%
3 0.18 [0.17, 0.23] [0.25, 0.25] [0.37, 0.37] 0.20 122%
4 0.30 [0.26, 0.26] [0.29, 0.29] [0.44, 0.44] 0.18 68%
5 0.15 [0.15, 0.15] [0.16, 0.16] [0.37, 0.37] 0.22 146%
6 0.17 [0.15, 0.19] [0.17, 0.17] [0.39, 0.39] 0.24 158%
7 0.19 [0.48, 0.48] [0.40, 0.40] [0.66, 0.66] 0.18 37%
8 0.19 [0.17, 0.17] [0.18, 0.18] [0.28, 0.28] 0.11 64%
9 0.19 [0.19, 0.19] [0.20, 0.23] [0.33, 0.33] 0.14 72%
10 0.24 [0.24, 0.24] [0.23, 0.23] [0.28, 0.28] 0.05 20%
11 0.23 [0.22, 0.22] [0.22, 0.22] [0.34, 0.34] 0.12 57%
12 0.10 [0.09, 0.10] [0.11, 0.11] [0.30, 0.30] 0.20 223%
13 0.15 [0.13, 0.13] [0.15, 0.15] [0.45, 0.45] 0.31 238%
14 0.21 [0.23, 0.23] [0.19, 0.19] [0.46, 0.46] 0.23 101%
15 0.16 [0.18, 0.18] [0.18, 0.18] [0.41, 0.41] 0.24 132%
16 0.16 [0.16, 0.16] [0.19, 0.19] [0.29, 0.29] 0.13 85%

Table 1: Comparison using 16 Indian villages microfinance data from Banerjee et al. (2013)
∗ Minimal Welfare Gain compares the minimal simulated equilibrium welfare under the Robust allo-
cation method and the simulated equilibrium welfare under the Original allocation implemented by
BSS.

Second, we find that the equilibrium average share of households purchasing microfinance

under random allocation is similar to the original BSS allocation method. When comparing

our robust optimal treatment allocation regime with the original allocation rule, our method

consistently outperforms the original rule in terms of both minimal and maximal equilib-

rium welfare. As depicted in Figure 1, improvements in welfare with minimal equilibrium

vary from 20% to 270%. Notice that the welfare at the minimal equilibrium of our approach

surpasses the maximal welfare under the other two approaches. This suggests that the in-

formation diffusion facilitated by the original treatment may not have significantly impacted

adoption rates. Additionally, Wang et al. (2024) finds that households with higher centrality,

such as the leaders selected by BSS, tend to have a lower borrowing probability compared

to less central households. It is possible that more central households have greater access to

alternative borrowing sources within their networks, thus diminishing their need for microfi-

nance, and reducing the spillover effects through strategic interactions.
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Figure 1: Comparisons between three approaches

7 Extension

7.1 Complete Information Game

In a complete information setting, units observe all the characteristics of other units partic-

ipating in the game. This means that units are informed of others’ choices before making

their own decisions, allowing them to play the best response to the observed actions rather

than basing their actions on beliefs, as is common in a private information setting. As a

consequence, unit i’s decision rule is:

Yi = 1
{
Ui(1, Y−i, X,D,G) ≥ 0

}
, ∀i ∈ N .

One main distinction from incomplete information settings is that the solution concept tran-

sitions to a pure-strategy Nash equilibrium. A pure-strategy Nash equilibrium is defined by a

set of actions y∗ = {y∗1, ..., y∗N} such that

Ui(y
∗
i , y

∗
−i, X,D,G) ≥ Ui(y

′
i, y

∗
−i, X,D,G)

for any y′i ∈ Y and for all i ∈ N . We denote the set of all such equilibria as Σ(X,D,G, ε) :=

{y∗}, given covariates X, treatment allocation D, network structure G, and the idiosyncratic
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shock ε. To simplify the notation, we subsequently refer to it as Σ(ε). Let ξ : Σ→ [0, 1] denote

the probability distribution over equilibria, and let ∆(Σ) := {ξ :
∑

y∗∈Σ ξ(y∗) = 1} denote the

set of all the probability distributions.

In scenarios with strategic complementarity, there exists a maximal and a minimal Nash

equilibrium, denoted by y∗ and y∗. For our counterfactual analysis, which is analogous to the

framework established in Theorem 3.1 under an incomplete information setting, we propose

the following:

Proposition 7.1. For a supermodular game, the least favorable equilibrium selection rule λ and
the most favorable equilibrium selection rule λ are:

λ := δy∗ , λ := δy∗ ,

where δy is the Dirac measure on Σ. In addition, the following conditions are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

The proof of Proposition 7.1 mirrors that of Theorem 3.1, with the primary modification

being the substitution of Bayesian Nash equilibrium with Nash equilibrium. Computing the

conditional choice probability differs from the previous analysis since it is no longer a simul-

taneous equation system. With complete information, the conditional choice probability is

given by:

Pr(Yi = 1|X,D,G, λ) =

∫
1
{
∃y−i : (1, y−i) ∈ Σ(ε) and ∀y−i, (0, y−i) /∈ Σ(ε)

}
dFε

Pr(Yi = 1|X,D,G, λ) =

∫
1
{
∃y−i : (1, y−i) ∈ Σ(ε)

}
dFε

The above expression is hard to compute. To further simplify the computation, let us define

event A :=
{
∃y−i : (1, y−i) ∈ Σ(ε)

}
and event B :=

{
∃y−i, (0, y−i) ∈ Σ(ε)

}
. Given Pr(A ∩

Bc|X,D,G) = Pr(A ∪B|X,D,G)− Pr(B|X,D,G), we hence have:

Pr(Yi = 1|X,D,G, λ) = 1− Pr(Yi = 0|X,D,G, λ).

As a consequence, it is enough to compute Pr(Yi = 1|X,D,G, λ) and Pr(Yi = 0|X,D,G, λ),
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which are given by:

Pr(Yi = 1|X,D,G, λ) =

∫
1

{
max

y−i:(1,y−i)∈Σ(ε)
Ui(1, y−i, X,D,G) ≥ 0

}
dFε, (33)

Pr(Yi = 0|X,D,G, λ) =

∫
1

{
min

y−i:(1,y−i)∈Σ(ε)
Ui(1, y−i, X,D,G) < 0

}
dFε. (34)

Let us define iC as the complement of unit i and their neighbor set, i.e., iC := N \ (Ni ∪ {i}).
Define yNi

as the collection of neighbors’ choices of unit i. Consequently, y−i can be expressed

as (yNi
, yiC ), where yiC represents the choices of units in iC . For the optimization problems

defined in Eq.33 (maximization) and Eq.34 (minimization), it is necessary to explore all

possible equilibria for each value of ε within the network game. Given our utility function

specification, the choice of unit i depends only on k ∈ iC through the choices of units directly

connected with i. Thus, we can simplify the maximization problem in Eq.33 to:

max
yNi

,y
iC

Ui(1, yNi
, X,D,G)

with constraints:

yj = 1{Uj(1, yNj\{i}, X,D,G) ≥ 0},∀j ∈ Ni, (35)

yk = 1{Uk(1, yNk
, X,D,G) ≥ 0}, ∀k ∈ iC . (36)

These constraints (Eq.35 and Eq.36) ensure that (1, yNi
, yiC ) forms a Nash equilibrium. In the

optimization, Ui(1, yNi
, X,D,G) does not depend directly on yiC but needs to confirm that

(1, yNi
, yiC ) is a Nash equilibrium for any given yNi

. If for some yNi
, multiple yiC ensure y−i as

a Nash equilibrium, the existence of any yiC that satisfies this condition is sufficient for our

purposes. We search for yNi
∈ Y |Ni| that maximizes Ui(yNi

, X,D,G), denoted as y∗Ni
. Given

the supermodular nature of our game, where neighbors’ choices are strategic complements to

unit j’s choice, we select yiC such that (yNi
, yiC ) constitutes the largest Nash equilibrium for

the given yNi
, leveraging the increasing monotonicity between yNi

and yiC . We then search

the yNi
that maximizes the objective function.

8 Conclusion

This paper proposes a method for constructing individualized treatment allocations to max-

imize equilibrium welfare robust to the presence of multiple equilibria in large simultane-

ous decision games with complementarity. Our approach, takes into account the inherent
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complexity introduced by the presence of multiple Nash equilibria, and the resulting incom-

pleteness. We refrain from making assumptions about the equilibrium selection mechanism,

which leads to both analytical and numerical challenges in evaluating counterfactual equilib-

rium welfare. Due to the inherent uncertainties in our model, we use the maximin welfare

criterion to evaluate treatment allocation rules. This leads to treatment allocation rules that

are optimized to maximize the worst-case equilibrium social welfare, ensuring their robust-

ness. The use of a greedy optimization algorithm further enhances the applicability of our

approach.

We acknowledge that several questions remain open, and there are multiple ways in which

our work can be extended. First, we have not explored counterfactual analysis within the

broader framework of general simultaneous decision games. Second, although we parametrize

the utility function and the distribution of idiosyncratic shock in this work, adopting a non-

parametric utility function and a non-parametric distribution of idiosyncratic shock could

significantly enhance the robustness and applicability of our approach. Third, while we have

assumed independence among idiosyncratic shocks, recent literature, such as Grieco (2014)

and de Paula and Tang (2020), have begun to relax this assumption, suggesting another

avenue for refining our model.
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Supplementary Materials of Robust Network
Targeting with Multiple Nash Equilibria

Appendix A Chi-Square Goodness of Fit Test

Number of Rooms Number of Rooms
Village 1-2 3-4 5-6 ≥ 7 Village 1-2 3-4 5-6 ≥ 7

1 0.08 0.04 0.61 0.38 23 0.06 0.22 3.27 0.00
2 92.90 17.03 0.13 – 24 0.31 0.19 0.60 –
3 0.75 0.14 0.53 – 25 0.06 0.86 1.52 –
4 4.81 0.50 0.62 0.00 26 0.04 0.14 0.15 –
5 0.02 0.02 2.08 0.15 27 0.20 0.13 0.80 0.01
6 0.35 0.15 0.02 0.04 28 345.59 115.88 6.39 1.76
7 0.82 0.45 0.74 0.00 29 0.02 0.01 1.03 0.08
8 0.07 0.10 0.00 0.45 30 2.42 1.02 0.00 0.00
9 1.76 0.81 0.05 – 31 0.18 0.97 0.19 –
10 0.01 0.02 1.38 0.01 32 0.76 0.36 0.00 0.87
11 0.09 0.03 0.34 0.10 33 1.61 0.12 0.72 1.55
12 0.00 1.16 1.47 0.35 34 0.12 0.31 0.11 –
13 1.67 0.06 0.26 3.79 35 0.21 0.45 0.45 0.09
14 0.01 0.10 0.92 0.00 36 0.11 0.80 0.68 0.93
15 0.05 0.00 0.58 1.11 37 0.04 0.03 0.17 0.03
16 0.03 0.04 0.24 0.01 38 0.00 0.09 0.32 –
17 80.36 7.58 0.37 0.34 39 0.35 0.03 0.09 –
18 2.20 1.76 0.73 5.54 40 0.43 0.02 0.03 –
19 0.00 2.02 0.60 0.24 41 0.01 0.00 0.07 0.00
20 0.04 0.23 0.01 0.89 42 49.43 10.70 1.26 0.00
21 0.04 0.00 0.25 0.14 43 0.82 0.00 0.58 0.03
22 0.42 0.93 2.04 0.05

Table 2: Chi-square values based on number of rooms for 43 Indian villages
microfinance data from Banerjee et al. (2013)
At 0.05 significance level, the critical value is given by 7.815.
′−′ symbol indicates that there are no households with more than 7 rooms.

Appendix B Lemmas

We first introduce notation. We define m := maxij |mij|, and F ε := minθ∈Θ
z∈Z

Fε(z
⊺θ). In addi-

tion, we define υ := min{F ε, 1−F ε}. We measure the distance between parameters θ with the

L1 metric, which we denote by ∥θ−θ′∥1 :=
∑dθ

k=1 |θk−θ′k|. For a K×L matrix A, ∥A∥∞ denotes

the operator norm of A induced by the L∞ norm, which is given as: ∥A∥∞ = max
k=1,...,K

L∑
l=1

|Akl|.
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B.1 Proof of Corollary 3.1

Corollary B.1. (Utilitarian Welfare at Equilibrium) Under Assumption 1, given the spec-
ification of our utility function, the predicted set of the expected utilitarian welfare under a
counterfactual policy D is given as:

WX,G,λ(D) ∈
[ 1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j ,

1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j

]
,

where

f(αi) =

{
Pr(Yi = 1|X,D,G, λ) if αi > 0

Pr(Yi = 1|X,D,G, λ) if αi ≤ 0.

Proof. Given

WX,G,λ(D) =
1

N

N∑
i=1

E
[
Ui(Y,X,D,G)− εiYi|X,D,G, λ

]
,

we have,

WX,G,λ(D) =
1

N

N∑
i=1

αi Pr(Yi = 1|X,D,G, λ) +
1

N

N∑
i=1

∑
j ̸=i

βij Pr(YiYj = 1|X,D,G, λ). (37)

Therefore, if αi > 0, αi Pr(Yi = 1|X,D,G, λ) achieves its lower bound by choosing the equi-
librium selection rule λ. When αi ≤ 0, αi Pr(Yi = 1|X,D,G, λ) achieves its lower bound by
choosing the equilibrium selection rule λ. For the second term, since βij ≥ 0 for all i, j ∈ N ,
it achieves its upper bound by choosing the equilibrium selection rule as λ and it achieves its
lower bound by choosing the equilibrium selection rule as λ. This is because

Pr(YiYj = 1|X,D,G, λ)

=
∑
σ∗∈Σ

λ(σ∗|X,D,G)

∫
1
{
αi +

∑
k ̸=i

βikσ
∗
k(X,D,G) ≥ εi

}
1
{
αj +

∑
k ̸=j

βjkσ
∗
k(X,D,G) ≥ εj

}
dFεidFεj

=
∑
σ∗∈Σ

λ(σ∗|X,D,G)

∫
1
{
αi +

∑
k ̸=i

βikσ
∗
k(X,D,G) ≥ εi

}
dFε

∫
1
{
αj +

∑
k ̸=j

βjkσ
∗
k(X,D,G) ≥ εj

}
dFε,

where the second equality holds by Assumption 1. Therefore,

Pr(YiYj = 1|X,D,G, λ) =
∑
σ∗∈Σ

λ(σ∗|X,D,G) Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗).

From Theorem 3.1, {Pr(Yj = 1|X,D,G, σ∗)}Ni=1 achieves their upper bound under the most
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favorable equilibrium selection rule λ, where σ∗ happens with probability 1. Therefore,

Pr(YiYj = 1|X,D,G, λ) = Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗)

≥ Pr(YiYj = 1|X,D,G, λ), ∀λ ∈ Λ.

By the symmetric argument, we have

Pr(YiYj = 1|X,D,G, λ) = Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗)

≤ Pr(YiYj = 1|X,D,G, λ), ∀λ ∈ Λ.

Therefore, for all i, j ∈ N ,

βij Pr(YiYj = 1|X,D,G, λ) ∈ [βijσ
∗
iσ

∗
j , βijσ

∗
iσ

∗
j ]. (38)

Plugging Eq.38 into Eq.37 completes the proof.

B.2 Proof of Lemma 5.1

Lemma B.1. Under Assumptions 1 and 3,

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1Eεn

[
∥θ̂ − θ∥1

∣∣∣S, σdata
]

where C1 is a constant that only depends on the distribution Fεn, the maximum link in the
network N , and the support of true parameter θ0.

Proof. By the Triangle inequality, an upper bound for our objective function is:

|Wn(D)−W (D)| =
∣∣∣ 1
N

N∑
i=1

(
σi(θ̂)− σi(θ)

)∣∣∣ ≤ 1

N

N∑
i=1

|σi(θ̂)− σi(θ)|.

We know:

σi(θ) =

∫
1

{
αi +

∑
j ̸=i

βijσj(θ)− εi ≥ 0
}
dF (ε)

= Fε

(
θ0 + θ1Di + θ⊺2Xi + θ⊺3XiDi +

θ4
Ni

∑
j ̸=i

GijmijDj +
1

Ni

∑
j ̸=i

(θ5 + θ6DiDj)Gijmijσj(θ)
)
.

Let r(i, θ) := θ0+θ1Di+θ⊺2Xi+θ⊺3XiDi+
θ4
Ni

∑
j ̸=i GijmijDj+

1
Ni

∑
j ̸=i(θ5+θ6DiDj)Gijmijσj(θ).

Therefore, ∣∣σi(θ̂)− σi(θ)
∣∣ = ∣∣Fε

(
r(i, θ̂)

)
− Fε

(
r(i, θ)

)∣∣.
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By the Mean Value Theorem,∣∣σi(θ̂)− σi(θ)
∣∣ = ∣∣∇θFε

(
ri(θ̃)

)
(θ̂ − θ)

∣∣
=

∣∣F ′
ε

(
r(i, θ̃)

)
∇θr(i, θ̃)(θ̂ − θ)

∣∣
= F ′

ε

(
r(i, θ̃)

)∣∣∇θr(i, θ̃)(θ̂ − θ)
∣∣

≤ τ
∣∣∇θr(i, θ̃)(θ̂ − θ)

∣∣.
For some θ̃ ∈ Rdθ on the segment from θ to θ̂. By the Cauchy–Schwarz inequality, we have:∣∣σi(θ̂)− σi(θ)

∣∣ ≤ τ∥∇θr(i, θ̃)∥2∥θ̂ − θ∥2 ≤ τ∥∇θr(i, θ̃)∥1∥θ̂ − θ∥1. (39)

To deal with the simultaneity within ∇θr(i, θ̃), define

∇θr(θ) :=
[
∇θ0r(θ) · · · ∇θdθ

r(θ)
]
,

where

∇θkr(θ) =


∇θkr(1, θ)

...

∇θkr(N, θ)

 ,

for all k = 1, ..., dθ. Then,

∥∇θr(i, θ)∥1 ≤ ∥∇θr(θ)∥∞, ∀i ∈ N , (40)

where recall ∥∇θr(θ)∥∞ = maxi=1,...,N ∥∇θr(i, θ)∥1 is the operator norm induced by the L∞
norm. To bound ∥∇θr(θ)∥∞, we define an implicit function I : RN × Rdθ → RN such that

I(r, θ) =


r(1, θ)− a1 −

θ4
|N1|

∑
j ̸=1

G1jm1jDj −
1

|N1|
∑
j ̸=1

(θ5 + θ6D1Dj)G1jm1jFε

(
r(j, θ)

)
...

r(N, θ)− aN −
θ4
|NN |

∑
j ̸=N

GNjmNjDj −
1

|NN |
∑
j ̸=N

(θ5 + θ6DNDj)GNjmNjFε

(
r(j, θ)

)


,

where ai = θ0 + θ1Di− θ⊺2Xi− θ⊺3XiDi. By the Implicit Function Theorem, ∇θr(θ) is given by:

∇θr(θ) = −
(
∇rI(r, θ)

)−1∇θI(r, θ), (41)
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where ∇rI(r, θ) is:

∇rI(r, θ) =


1 − 1

|N1|F
′
ε(r(1, θ))(θ5 + θ6D1D2)G12m12 · · ·

− 1
|N2|F

′
ε(r(2, θ))(θ5 + θ6D2D1)G21m21 1 · · ·

...
... . . .

− 1
|NN |F

′
ε(r(N, θ))(θ5 + θ6DND1)GN1mN1 − 1

|NN |F
′
ε(r(N, θ))(θ5 + θ6DND2)GN2mN2 · · ·


,

and ∇θI(r, θ) is:

∇θI(r, θ) =

−1 −D1 −X⊺
1 −D1X

⊺
1 −

∑
j ̸=1

G1jm1jDj

|N1|
−

∑
j ̸=1

F ′
ε(r(j, θ))G1jm1j

|N1|
−

∑
j ̸=1

F ′
ε(r(j, θ))D1DjG1jm1j

|N1|

−1 −D2 −X⊺
2 −D2X

⊺
2 −

∑
j ̸=2

G2jm2jDj

|N2|
−

∑
j ̸=2

F ′
ε(r(j, θ))G2jm2j

|N2|
−

∑
j ̸=2

F ′
ε(r(j, θ))D2DjG2jm2j

|N2|
...

...
...

...
...

...
...

−1 −DN −X⊺
N −DNX⊺

N −

∑
j ̸=N

GNjmNjDj

|NN |
−

∑
j ̸=N

F ′
ε(r(j, θ))GNjmNj

|NN |
−

∑
j ̸=N

F ′
ε(r(j, θ))DNDjGNjmNj

|NN |



.

Therefore, supremum norm of Eq.41 is bounded by

∥∇θr(θ)∥∞ = ∥
(
∇rI(r, θ)

)−1∇θI(r, θ)∥∞ ≤ ∥
(
∇rI(r, θ)

)−1∥∞∥∇θI(r, θ)∥∞. (42)

The last inequality holds because norm ∥A∥∞ on matrix A is the operator norm induced by
L∞ norm, which is a matrix norm. This ensures that it satisfies the submultiplicativity prop-
erty. Therefore, we have the inequality. Assuming ∇rI(r, θ̃) is non-singular, and by invoking
Lemma D.1 — a corollary of Berge’s Maximum Theorem — the norm ∥

(
∇rI(r, θ̃)

)−1∥∞ is a
continuous function with respect to the entries of ∇rI(r, θ̃). Given, for all i, j ∈ N , Di and
Gij are binary, Xi has bounded support, θ is in a compact parameter space (Assumption 3),
and F ′

ε(·) ∈ [0, τ ], the Extreme Value Theorem (Lemma E.1) guarantees the existence of a
uniform maximum of ∥

(
∇rI(r, θ̃)

)−1∥∞ among all the values of X, D, G, which only depends
on the support of each variable. We denote this uniform maximum as ζ. For ∥∇θI(r, θ̃)∥∞ in
Eq.42, we know:

∥∇θI(r, θ̃)∥∞ = max
i∈N

1 +Di + ∥Xi∥1 +Di∥Xi∥1 +
1

|Ni|
∑
j ̸=i

DjGij|mij|

+
1

|Ni|
∑
j ̸=i

F ′
ε(r(j, θ̃))(1 +DiDj)Gij|mij|.

(43)

Furthermore, Eq.43 is upper bounded by 2+2maxi∈N ∥Xi∥1+2mτ , where m := maxi,j∈N |mij|.
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Therefore, we have
∥∇θI(r, θ̃)∥∞ ≤ 2 + 2∥X∥∞ +m+ 2mτ. (44)

Combining Eq.39, Eq.40 and Eq.44, we have:

1

N

N∑
i=1

∣∣σi(θ̂)− σi(θ)
∣∣ ≤ ζτ(2 + 2∥X∥∞ +m+ 2mτ)∥θ̂ − θ∥1.

To complete the proof, let C1 = ζτ(2 + 2∥X∥∞ +m+ 2mτ).

B.3 Proof of Lemma 5.2

Lemma B.2. (Sampling Uncertainty) Under Assumption 1, 4, 5, and 6, we have

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
,

where C2 is a constant that depends on the distribution Fεn, and the dimension and supports of
the parameter space, the covariates space X , the network space G and the treatment allocation
space D.

Proof. The Hessian matrices in the Taylor expansions of M̂(θ0)− M̂(θ̂) and M(θ̂)−M(θ0) are:

∇2
θM̂(θ́) =

1

n

n∑
i=1

[
Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́)

]
ẐiẐ

⊺
i ,

∇2
θM(θ̀) =

1

n

n∑
i=1

Eεn

[[
Yiω0(Z

⊺
i θ̀)− (1− Yi)ω1(Z

⊺
i θ̀)

]
ZiZ

⊺
i

∣∣∣S, σdata
]
,

where

ω0(a) =
F ′′
ε (a)Fε(a)− F ′

ε(a)
2

Fε(a)2
, ω1(a) =

F ′′
ε (a)[1− Fε(a)] + F ′

ε(a)
2

[1− Fε(a)]2
,

and a ∈ R. Combining the above equations with Eq.23 and Eq.24, we have:

M̂(θ0)− M̂(θ̂) =
1

2n

n∑
i=1

[
Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́)

][
(θ̂ − θ0)

⊺Ẑi

]2
≤ 0. (45)

M(θ̂)−M(θ0) =
1

2n

n∑
i=1

[
σiω0(Z

⊺
i θ̀)− (1− σi)ω1(Z

⊺
i θ̀)

][
(θ̂ − θ0)

⊺Zi

]2
≤ 0, (46)

where σi = Eεn [Yi|S, σdata]. Although Eq.45 and Eq.46 are non-positive, they do not pin
down the sign of the coefficient on the quadratic term (i.e., Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́) and

σiω0(Z
⊺
i θ̀) − (1 − σi)ω1(Z

⊺
i θ̀)). Under Assumption 4, we have ω0(a) < 0 and ω1(a) > 0 for

all a ∈ R. Furthermore, Assumption 3 ensures that Θ is a compact parameter space, which
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guarantees that θ̂ resides within this compact set. Consequently, θ́ and θ̀ are also confined
within the same compact set. Given this setup, all elements in Zi and Ẑi for each i = 1, . . . , n
also exist within a compact set. Therefore, the products Ẑ⊺

i θ́ and Z⊺
i θ̀ are confined within a

compact set, denoted as Ξ. We define the following bounds for ω0 and ω1 across Ξ:

ω0 := max
x∈Ξ

ω0(x), ω1 := max
x∈Ξ
−ω1(x), ω0 := min

x∈Ξ
ω0(x), ω1 := min

x∈Ξ
−ω1(x).

By Assumption 1 and 4, the probability density function of εn and its derivative are bounded.
In addition, under Assumption 1 they are continuous functions. Therefore, the Extreme
Value Theorem guarantees the existence of ω0 and ω1. Define ω as max{ω0, ω1}, and ω as
min{ω0, ω1}. We have ω0(Ẑ

⊺
i θ́) ≤ ω and ω0(Z

⊺
i θ̀) ≤ ω for any i = 1, ..., n. In addition,

−ω1(Ẑ
⊺
i θ́) ≤ ω and −ω1(Z

⊺
i θ̀) ≤ ω for any i = 1, ..., n. Combining the above arguments with

Eq.45 and Eq.46:

Gn(θ̂)−Gn(θ0) ≥ −ω(θ̂ − θ0)
⊺ 1

2n

n∑
i=1

(ZiZ
⊺
i + ẐiẐ

⊺
i )(θ̂ − θ0). (47)

Under Assumption 5, 1
n

∑n
i=1 ẐiẐ

⊺
i and 1

n

∑n
i=1 ZiZ

⊺
i are positive definite matrices for all X ∈

X n and G ∈ G. This guarantees that the smallest eigenvalues of 1
n

∑n
i=1 ẐiẐ

⊺
i and 1

n

∑n
i=1 ZiZ

⊺
i

are positive. However, the smallest eigenvalue still depends on the size of the training sample.
Lemma D.2 addresses this by guaranteeing the existence of a uniform lower bound on the
smallest eigenvalue. Lemma D.2 is a corollary of Berge’s Maximum Theorem (Lemma E.2). A
proof is provided in Appendix D.2. Given that any element in Zi and Ẑi is a linear combination
of products between Xi, Gij, σdata

i , Di, and D ∈ {0, 1}n, σdata ∈ [0, 1]n, G ∈ {0, 1}n×n, and
X ∈ X n are both compact, the Extreme Value Theorem (Lemma E.1) guarantees the existence
of a minimum smallest eigenvalue, which only depends on the bound of each element16

and is independent of the training data. Assumption 6 guarantees that the average number
of treated units in the training data is non-zero for any network size. Combined with the
above arguments, this ensures that the matrices formed by 1

n

∑n
i=1 ẐiẐ

⊺
i and 1

n

∑n
i=1 ZiZ

⊺
i

have strictly positive minimum smallest eigenvalues. We denote these minimum smallest
eigenvalues as ς0min and ς1min, respectively. In addition, let ςmin = min{ς0min, ς

1
min}. Therefore,

(θ̂ − θ0)
⊺ 1

2n

n∑
i=1

(ZiZ
⊺
i + ẐiẐ

⊺
i )(θ̂ − θ0) ≥ ςmin∥θ̂ − θ0∥22 > 0. (48)

Combining Eq.30 with Eq.47 and Eq.48, we conclude that the sampling uncertainty of θ̂ is
characterized by the empirical process Gn(·). Formally:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ dθ
−ωςmin

Eεn
[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
.

16Although the equilibrium σ and σ̂data may not be continuous functions of X, D, and G, the inherent com-
pactness of Zi and Ẑi for all i = 1, . . . , n suffices to apply the Extreme Value Theorem.
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To complete the proof, let C2 =
dθ

−ωςmin
.

B.4 Proof of Lemma 5.3

Lemma B.3. Under Assumption 1 to 5, we have

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤

C3 + C4

√
log(n)√

n
,

where C3 and C4 are constants that depend only on the support of covariates, the distribution of
ε, Cσ, the covariates space X , the network space G and the treatment allocation space D.

Proof. Recall we are using a two-step ML estimation procedure, so the first step of estimation
introduces additional sampling uncertainty through σ̂data. To separate the sampling uncer-
tainty of the first and the second steps, we introduce M(θ), which is the likelihood function
evaluated at the true equilibrium in the training data σdata:

M(θ) =
1

n

n∑
i=1

Yi log
(
Fε(Z

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Z

⊺
i θ)

)
.

We then decompose the initial empirical process Gn(θ) into two parts:

Gn(θ) = M̂(θ)−M(θ) +M(θ)−M(θ).

The first term measures the uncertainty of using the estimated equilibrium σ̂data, and the sec-
ond term measures the uncertainty of using the estimated parameter θ̂. Rewrite the gradient
of the empirical process as

∇θGn(θ̃) = ∇θM̂(θ̃)−∇θM(θ̃) +∇θM(θ̃)−∇θM(θ̃).

By the triangle inequality, we have:

∥∇θGn(θ̃
′)∥1 ≤ ∥∇θM̂(θ̃)−∇θM(θ̃)∥1 + ∥∇θM(θ̃)−∇θM(θ̃)∥1. (49)

The gradient of Gn(·), M̂(·), M(·) and M(·) are dθ × 1 vectors. Let ∇kGn(·), ∇kM̂(·), ∇kM(·)
and ∇kM(·) denote their k-th elements. In addition, we define a sequence of empirical pro-
cesses {Bk(θ)}dθk=1 where Bk(θ) := ∇kM(θ)−∇kM(θ), and a sequence of stochastic processes
{Ak(θ)}dθk=1 where Ak(θ) := ∇kM̂(θ)−∇kM(θ). The first term in Eq.49 is then

∥∇θM̂(θ̃)−∇θM(θ̃)∥1 =
dθ∑
k=1

|Ak(θ̃)|, (50)
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and the second term in Eq.49 is

∥∇θM(θ̃)−∇θM(θ̃)∥1 =
dθ∑
k=1

|Bk(θ̃)|. (51)

Combining Eq.49 with Eq.50 and Eq.51, we conclude

Eεn
[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
≤

dθ∑
k=1

Eεn
[
|Ak(θ̃)|

∣∣S, σdata
]
+

dθ∑
k=1

Eεn
[
|Bk(θ̃)|

∣∣S, σdata
]
. (52)

An upper bound for the first term in Eq.52 is provided by Lemma D.3. An upper bound for
the second term in Eq.52 is provided by Lemma D.4. Combining them,

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤ dθ

CA

√
1 + ln(2) + 1√

n
+

d
3/2
θ CB1√

n

√
log(1 + CB2

√
n).

In addition, given n ≥ 2,

log(1 + CB2

√
n) ≤ 2 log(CB2

√
n) = 2 log(CB2) + log(n).

As a consequence,

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤ dθ

CA

√
1 + ln(2) + 1√

n
+
d
3/2
θ CB1√

n

√
log(CB2)+

d
3/2
θ CB1√

n

√
log(n).

To complete the proof, let C3 = (CA

√
1 + ln(2) + 1)dθ + d

3/2
θ CB1, and C4 = d

3/2
θ CB1.

Appendix C Theorems and Propositions

C.1 Proof of Theorem 3.1

Theorem C.1. For a supermodular game, the least favorable equilibrium selection rule λ and
the most favorable equilibrium selection rule λ are given as:

λ := δσ∗ , λ := δσ∗ ,

where δσ is the Dirac measure on Σ. In addition, the following conditions are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).
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Proof. Recall that the conditional choice probability is:

Pr(Yi = 1|X,D,G, λ) =
∑

y−i∈YN−1

Pr(Yi = 1, Y−i = y−i|X,D,G, λ)

=
∑

y−i∈YN−1

∫
λ(1, y−i|X,D,G, ε)dFε

=

∫ ∑
y−i∈YN−1

λ(1, y−i|X,D,G, ε)dFε.

Summing over all the units yields

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

∑
y−i∈YN−1

Pr(Yi = 1, Y−i = y−i|X,D,G, λ)

=
N∑
i=1

∑
y−i∈YN−1

∫
λ(1, y−i|X,D,G, ε)dFε

=
N∑
i=1

∫ ∑
y−i∈YN−1

λ(1, y−i|X,D,G, ε)dFε

Given the properties of a supermodular game, there always exists a maximal pure strategy
Bayesian Nash equilibrium yε and a minimal pure strategy Bayesian Nash equilibrium y

ε
for

all ε. Recall Eq.7, for a given ε ∈ RN , these two extreme equilibria can be represented by:

yi
ε
= 1

{
αi +

∑
j ̸=i

βijσ
∗
j(X,D,G) ≥ εi

}
, ∀i ∈ N .

yiε = 1
{
αi +

∑
j ̸=i

βijσ
∗
j(X,D,G) ≥ εi

}
, ∀i ∈ N .

Therefore, y
ε

happens with probability 1 under our defined least favorable equilibrium selec-
tion rule λ, and yε happens with probability 1 under our defined most favorable equilibrium
selection rule λ. We know that yε ≥ y

ε
for any ε where the order in here is product order. For

any Bayesian Nash equilibrium yε ∈ Σ(X,D,G, ε), we must have yiε ≥ yiε ≥ yi
ε

for any i ∈ N ,
ε ∈ RN . Therefore, there are only three possible scenarios for each unit i:

• yiε = yiε = yi
ε
= 1.

• yiε = yiε = yi
ε
= 0.

• yiε = 1, yi
ε
= 0 and yiε ∈ {0, 1}.

Recall Pr(Yi = 1|X,D,G, λ, ε) =
∑

y−i∈YN−1 λ(1, y−i|X,D,G, ε), for any ε ∈ RN , we must
have:
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• when yiε = yi
ε
= 1, Pr(Yi = 1|X,D,G, λ, ε) = 1 for all λ ∈ Λ and for all i ∈ N ;

• when yiε = yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 0 for all λ ∈ Λ and for all i ∈ N ;

• when yiε = 1 and yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 0 for all i ∈ N ;

• when yiε = 1 and yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 1 for all i ∈ N .

Therefore, for all ε ∈ RN and i ∈ N ,

Pr(Yi = 1|X,D,G, λ, ε) ≤ Pr(Yi = 1|X,D,G, λ, ε), ∀λ ∈ Λ,

Pr(Yi = 1|X,D,G, λ, ε) ≥ Pr(Yi = 1|X,D,G, λ, ε), ∀λ ∈ Λ.

As a consequence, the following two conditions are also satisfied:

Pr(Yi = 1|X,D,G, λ) ≤ Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ, (53)

Pr(Yi = 1|X,D,G, λ) ≥ Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ, (54)

Therefore, we must have:

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≤
N∑
i=1

Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ,

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≥
N∑
i=1

Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ.

As a consequence,

λ = argmin
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

λ = argmax
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

In addition, given Eq.53 and Eq.54, we have:

λ = argmin
λ∈Λ

Pr(Yi = 1|X,D,G, λ), ∀i ∈ N .

λ = argmax
λ∈Λ

Pr(Yi = 1|X,D,G, λ), ∀i ∈ N .

Therefore,

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),
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sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

C.2 Proof of Theorem 5.1

Theorem C.2. (Sampling Uncertainty of Regret) Under Assumption 1 to 6, the sampling
uncertainty of the two-step MLE estimator is bounded by:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

In addition, the sampling uncertainty of the empirical welfare is bounded by:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.

Proof. Recall
Eεn

[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
. (55)

Plugging Lemma 5.3 into Eq.55 leads to

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

.

Combining Lemma 5.1 with Eq.55, we conclude:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.

C.3 Proof of Proposition 5.1

Proposition C.1. Under Assumptions 1 and Assumptions 3, the curvature ξ of Wn(D) and
the submodularity ratio γ of Wn(D) are in (0, 1). The greedy algorithm enjoys the following
approximation guarantee for the problem in Eq.19:

Wn(DG) ≥
1

ξ
(1− e−ξγ)Wn(D̃),

where DG is the treatment assignment rule that is obtained by Algorithm 1.

Proof. The curvature is defined as the smallest value of ξ such that

Wn(R ∪ {k})−Wn(R) ≥ (1− ξ)[Wn(S ∪ {k})−Wn(S)] ∀S ⊆ R ⊆ N ,∀k ∈ N \R.
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As a consequence,

ξ = max
S⊆R⊂N ,k∈N\R

1− Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
.

The submodularity ratio of a non-negative set function is the largest γ such that∑
k∈R\S

Wn(S ∪ {k})−Wn(S) ≥ γ[Wn(S ∪R)−Wn(S)], ∀S,R ⊆ N .

As a consequence,

γ = min
S ̸=R

∑
k∈R\S[Wn(S ∪ {k})−Wn(S)]

Wn(S ∪R)−Wn(S)

Recall the utility specification in Eq.16, we denote θ̂0+θ̂1Di+X⊺
i θ̂2+X⊺

i θ̂3Di as α̂1i and θ̂0+X ′
i θ̂2

as α̂0i. To connect to the set function notation, we further denote DR = {Di = 1 : i ∈ R}.
Therefore, for i ∈ R, we have:

W i
n(R∪ {k})−W i

n(R) = Fε

(
α̂1i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijDj +
1

|Ni|
∑
j ̸=i

θ̂5mijGijσj +
1

|Ni|
∑
j ̸=i

θ̂6DjmijGijσj

)
− Fε

(
α̂1i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijD
′
j +

1

|Ni|
∑
j ̸=i

θ̂5mijGijσ
′
j +

1

|Ni|
∑
j ̸=i

θ̂6D
′
jmijGijσ

′
j

)
,

where σb = Pr(Yb = 1|X,G,DR∪{k}, λ; θ̂) and σ′
b = Pr(Yb = 1|X,G,DR, λ; θ̂) for all b =

1, ..., N . For m ∈ N \ R ∪ {k}, their empirical welfare is given as:

Wm
n (R∪ {k})−Wm

n (R) = Fε

(
α̂0i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijDj +
1

|Nm|
∑
j ̸=m

θ̂5mmjGmjσj

)
− Fε

(
α̂0i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijD
′
j +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmjσ
′
j

)
.

For the unit k, her empirical welfare is given as:

W k
n (R∪ {k})−W k

n (R)

= Fε

(
α̂1k +

1

|Nk|
∑
j ̸=k

θ̂4mkjGkjDj +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkjσj +
1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
− Fε

(
α̂0k +

1

|Nk|
∑
j ̸=k

θ̂4mkjGkjD
′
j +

1

|Nk|
∑
j ̸=k

θ̂5mkjGkjσ
′
j

)
.
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In addition, the empirical welfare increments from assigning unit k treatment is given as:

Wn(R∪ {k})−Wn(R) =
∑
i∈R

W i
n(R∪ {k})−W i

n(R) +
∑

m∈N\R∪{k}

Wm
n (R∪ {k})−Wm

n (R)

+W k
n (R∪ {k})−W k

n (R).

Applying the Mean Value Theorem, and Assumption 1, Wn(R∪{k})−Wn(R) is upper bounded
by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj − σ′
j) +

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj − σ′
j) +

1

|Ni|
(θ̂4 + θ̂6σk)mikGik

)
+

τ

N

∑
m∈N\R∪{k}

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)

+
τ

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
,

where |θ| denotes the element-wise absolute value of θ. Since (σi − σ′
i) ∈ [0, 1] and Di, σi ∈

{0, 1} for all i ∈ N , and recall m := maxij |mij|, we can further upper bound the above
equation by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mGij +
1

|Ni|
∑
j ̸=i

θ̂6mGij +
θ̂4mGik

N

)
+

τ

N

∑
m∈N\R∪{k}

( θ̂4mGmk

N
+

1

|Nm|
∑
j ̸=m

θ̂5mGmj

)
+

τ

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mGkj +
1

|Nk|
∑
j ̸=k

θ̂6mGkj

)
.

Given 1
|Ni|

∑
j ̸=i Gij = 1 for all i, j ∈ N , we can further upper bound the empirical welfare

increase by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

(θ̂5 + θ̂6)m+
τ

N

∑
m∈N\R∪{k}

θ̂5m+
τ

N

(
θ̂1 +X⊺

i θ̂3 + (θ̂5 + θ̂6)m
)
+

τ

N

θ̂4mN

N
.

Summarizing all the units together, we have:

Wn(R∪ {k})−Wn(R) ≤ τ(θ̂5 + θ̂6)m+
τ

N
(θ̂1 +X⊺θ̂3 +

θ̂4mN

N
),
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where X = {Xi : maxXi∈X X⊺θ̂3}. The lower bound of W (R∪ {k})−W (R) is:

Wn(R∪ {k})−Wn(R)

≥ F ε

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj − σ′
j) +

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj − σ′
j) +

1

|Ni|
(θ̂4 + θ̂6σk)mikGik

)
+

F ε

N

∑
m∈N\R∪{k}

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)

+
F ε

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
.

(56)

There are three different effects of assigning treatment to unit k. The first effect is the direct
treatment effect on unit k, which is the third term in Eq.56:

σk − σ′
k ≥ F ε

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
.

Given σj − σ′
j ≥ 0 and σj ≥ 0 for all j ∈ N , we further bounds the direct effect from below

by:
σk − σ′

k ≥ F ε(θ̂1 +X⊺
k θ̂3). (57)

For the units in the treated and untreated groups, the indirect treatment effects manifest
differently. Specifically, for units i in the treated group, their indirect treatment effects are
given by the first term in Eq.56:

σi−σ′
i ≥ F ε

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj−σ′
j)+

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj−σ′
j)+

1

|Ni|
(θ̂4+θ̂6σk)mikGik

)
.

(58)
We then further bound the indirect effects in Eq.58 by:

σi − σ′
i ≥ F ε

1

|Ni|
θ̂4mikGik ≥

F ε

N
θ̂4mikGik. (59)

For units m not in the treated group, the indirect treatment effects, which is given by the
second term of Eq.56, can be quantified as follows:

σm − σ′
m ≥ F ε

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)
.

This is further bounded below by:

σm − σ′
m ≥

F ε

N
θ̂4mmkGmk. (60)
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Combining Eq.57, Eq.59 and Eq.60 with Eq.56 leads to

Wn(R∪ {k})−Wn(R) ≥
F ε

NN

∑
i∈N\{k}

(
θ̂4mikGik

)
+

F ε

N
(θ̂1 +X⊺

i θ̂3).

Given that unit k has at least N neighbors, we have:

Wn(R∪ {k})−Wn(R) ≥
F εmθ̂4N

NN
+

F ε

N
(θ̂1 +X⊺

i θ̂3).

Therefore,

Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
≥

F εmθ̂4N

NN
+

F ε

N
(θ̂1 +X⊺

i θ̂3)

τ(θ̂5 + θ̂6)m+ τ
N
(θ̂1 +X⊺θ̂3 +

θ̂4mN
N

)
,

which ranges between (0,1). As a consequence, the submodularity ratio

ξ = max
S⊆R⊂N ,k∈N\R

1− Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
∈ (0, 1).

In addition, the curvature

γ = min
S ̸=R

∑
k∈R\S[Wn(S ∪ {k})−Wn(S)]

Wn(S ∪R)−Wn(S)
∈ (0, 1).

Combining with Bian et al. (2017, Theorem 1), we finish the proof.

Appendix D Preliminary Lemmas

D.1 Lemma D.1

Lemma D.1. The ∥∇σI(σ, θ)
)−1∥∞ is a continuous function with respect to any entries of

∇σI(σ, θ).

Proof. Let A denote∇σI(σ, θ) and A−1 denote
(
∇σI(σ, θ)

)−1. By the definition of the Uniform
norm,

∥∇σI(σ, θ)
)−1∥∞ = max

i∈N

N∑
j=1

|A−1
ij |1.

To prove this maximum is a continuous function, two conditions of Berge’s Maximum Theo-
rem must be satisfied:

• Continuous Function: Let fi(A) =
∑N

j=1 |A
−1
ij |. Then, fi(A) = ∥A−1

i,: ∥, where Ai,: de-
notes the i-th row of matrix A. fi(A) is continuous with respect to the entries of A by
matrix inverse operation and the continuity of the ℓ1 norm calculation with respect to
the vector entries.
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• Compact Parameter Space: The set over which the maximum is taken (the set of row
indices i) is trivially compact as it is finite.

Therefore, by Berge’s Maximum Theorem, ∥∇σI(σ, θ)
)−1∥∞ is a continuous function with

respect to any entry of ∇σI(σ, θ).

D.2 Lemma D.2

Lemma D.2. Under Assumption 1, the smallest and largest eigenvalues of 1
n

∑n
i=1 ẐiẐ

⊺
i and

1
n

∑n
i=1 ZiZ

⊺
i are continuous functions of any element of Zi and Ẑi, for any i = 1, ..., n.

Proof. Denote the matrix 1
N

∑N
i=1 ZiZ

⊺
i as B. B is a symmetric matrix. Therefore, its smallest

(ηmin) and largest (ηmax) eigenvalues are given by

ηmin(B) = min
θ ̸=0∈Rdθ

θ⊺Bθ

θ⊺θ
, (61)

ηmax(B) = max
θ ̸=0∈Rdθ

θ⊺Bθ

θ⊺θ
. (62)

Since we are studying the continuous property of ηmin (ηmax) to Z given a θ, we restrict θ to
be a unit vector (i.e., ∥θ∥2 = 1) without lose of generality. Rewrite above equations as:

ηmin(B) = min
θ:∥θ∥2=1

θ⊺Bθ.

ηmax(B) = max
θ:∥θ∥2=1

θ⊺Bθ.

Now, we apply the Berge Maximum Theorem to Eq.61 and Eq.62 to study the continuous
property. Two conditions of the Berge Maximum Theorem must be satisfied:

• Continuous Function: Given θ⊺Bθ is a quadratic function, and ∥θ∥2 = 1 (i.e., θ ̸= 0), it
must be a continuous function w.r.t. θ and Zi for all i ∈ N .

• Compact Parameter Space: Given ∥θ∥2 = 1, the parameter space is compact.

Therefore, by Berge’s Maximum Theorem, the largest and smallest eigenvalues are continu-
ous functions of any element of Zi. By employing a symmetric argument to 1

n

∑n
i=1 ẐiẐ

⊺
i , we

finish the proof.

D.3 Lemma D.3

Lemma D.3. Under Assumptions 1, 2, and 4:

Eεn
[
sup
θ∈Θ
|Ak(θ)|

∣∣S, σdata
]
≤ CA

√
1 + ln(2)

n
,

where CA is a constant that depends only on the support of covariates, the distribution of ε and
Cσ.
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Proof. Recall Ak(θ) = ∇kM̂(θ)−∇kM(θ), and

∇kM̂(θ) =
1

n

n∑
i=1

[
Yi
F ′
ε(Ẑ

⊺
i θ)

Fε(Ẑ
⊺
i θ)
− (1− Yi)

F ′
ε(Ẑ

⊺
i θ)

1− Fε(Ẑ
⊺
i θ)

]
Zik,

∇kM(θ) =
1

n

n∑
i=1

[
Yi
F ′
ε(Z

⊺
i θ)

Fε(Z
⊺
i θ)
− (1− Yi)

F ′
ε(Z

⊺
i θ)

1− Fε(Z
⊺
i θ)

]
Zik.

Let θ̃ := arg supθ∈Θ |Ak(θ)|. Therefore,

Ak(θ̃) =
1

n

n∑
i=1

[
Yi

(F ′
ε(Ẑ

⊺
i θ̃)

Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

Fε(Z
⊺
i θ̃)

)
− (1− Yi)

( F ′
ε(Ẑ

⊺
i θ̃)

1− Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

1− Fε(Z
⊺
i θ̃)

)]
Zik.

Applying the Mean value theorem,

F ′
ε(Ẑ

⊺
i θ̃)

Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

Fε(Z
⊺
i θ̃)

= (Ẑi − Zi)
⊺∇Z

F ′
ε(Z̃

⊺
i θ̃)

Fε(Z̃
⊺
i θ̃)

,

and
F ′
ε(Ẑ

⊺
i θ̃)

1− Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

1− Fε(Z
⊺
i θ̃)

= (Ẑi − Zi)
⊺∇Z

F ′
ε(Z̃

⊺
i θ̃)

1− Fε(Z̃
⊺
i θ̃)

,

for some Z̃i ∈ Rdθ on the segment from Ẑi to Zi. Therefore,

|Ak(θ̃)| =
1

n

n∑
i=1

|Yiω0(Z̃
⊺
i θ̃)(Ẑi − Zi)

⊺Z̃i − (1− Yi)ω1(Z̃
⊺
i θ̃)(Ẑi − Zi)

⊺Z̃i|Zik

≤ 1

n

n∑
i=1

[
Yi|ω0(Z̃

⊺
i θ̃)∥(Ẑi − Zi)

⊺Z̃i|+ (1− Yi)|ω1(Z̃
⊺
i θ̃)∥(Ẑi − Zi)

⊺Z̃i|
]
Zik

≤ 1

n

n∑
i=1

|ω∥(Ẑi − Zi)
⊺Z̃i|Zik.

By the Cauchy–Schwarz inequality, we have:

|Ak(θ̃)| ≤
1

n

n∑
i=1

|ω∥Ẑi − Zi∥1∥Z̃i∥∞Zik

≤ |ω|z̄2 1
n

n∑
i=1

∥Ẑi − Zi∥1,
(63)

where z := maxi=1,...,n ∥Zi∥∞. Recall the definition of Ẑi from Eq.17:

Ẑi =
(
1,Di,X

⊺
i ,X

⊺
iDi,

1

|Ni|
∑
j ̸=i

mijGijDj,
1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j ,

1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j DiDj

)⊺
.
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Therefore, we rewrite ∥Ẑi − Zi∥1 as:

∥Ẑi − Zi∥1 =
∣∣∣ 1

|Ni|
∑
j ̸=i

mijGij(σ̂
data
j − σdata

j )
∣∣∣+ ∣∣∣ 1

|Ni|
∑
j ̸=i

mijGij(σ̂
data
j − σdata

j )DiDj

∣∣∣.
By triangle inequality,

∥Ẑi − Zi∥1 ≤
1

|Ni|
∑
j ̸=i

|mij|Gij(1 + DiDj)|σ̂data
j − σdata

j |.

Applying Lemma D.5, and defining m := maxi,j∈N |mij|, we have

Eεn [∥Ẑi − Zi∥1|S, σdata] ≤ 3mCσ

√
1 + ln(2)

n
. (64)

Plug Eq.64 into Eq.63,

Eεn
[
sup
θ∈Θ
|Ak(θ)|

∣∣S, σdata
]
≤ 3|ω|z̄2mCσ

√
1 + ln(2)

n
.

Setting CA = 3|ω|z̄2mCσ, completes the proof.

D.4 Lemma D.4

Lemma D.4. Define z := maxi=1,..,n ∥Zi∥∞. Under Assumption 1 to 5, we have:

Eεn

[
sup
θ∈Θ
|Bk(θ)|

∣∣∣S, σdata
]
≤ 1√

n

(
1 + 2C4

√
dθ log(1 + C5

√
n)
)
,

where CB1 is a universal constant that only depend on the distribution Fεn and CB2 = 4|ω|z2.

Proof. For a given δ ≥ 0 and associated covering number H = Nc(δ,Θ, L1), let U := {θ1, ..., θH}
be a δ-cover of Θ. For any θ ∈ Θ, we can find some θℓ such that ∥θ − θℓ∥1 ≤ δ. Let
θ̃ := arg supθ∈Θ |Bk(θ)|. Therefore,

|Bk(θ̃)| = |Bk(θ̃)− Bk(θ
ℓ) + Bk(θ

ℓ)|
≤ |Bk(θ̃)− Bk(θ

ℓ)|+ |Bk(θ
ℓ)|

≤ sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)|+ max

ℓ=1,...,H
|Bk(θ

ℓ)|.
(65)

Apply Lemma D.6 to bound the first term in Eq.65:

Eεn

[
sup

γ,γ′∈Θ
∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)|
∣∣∣S, σdata

]
≤ |ω|z̄2δ, (66)
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where z := maxi=1,..,n ∥Zi∥∞. To bound the second term in Eq.65, we introduce {ε̃i}ni=1, an
independent copy of εn that follows the same distribution Fεn. Hence, the associated {Ỹi}ni=1

(i.e., Ỹi = 1{αi +
∑

j ̸=i βijσ
data
j − ε̃i ≥ 0}) has the same distribution as {Yi}Ni=1 conditional on

the S and σdata. We denote the expectation with respect to ε̃ as Eε̃(·). Recall that the criterion
function is:

mYi,Zi
(θ) := Yi log(Fε(Z

⊺
i θ)) + (1− Yi) log(1− Fε(Z

⊺
i θ)).

Denote the empirical measure of our criterion function with {Ỹi}Ni=1 as M̃(θ):

M̃(θ) :=
1

n

n∑
i=1

mỸi,Zi
(θ).

By definition of Ỹi, we have M(θ) := Eεn [M(θ)|S, σdata] = Eε̃[M̃(θ)|S, σdata]. Therefore,

Eεn

[
max

ℓ=1,...,H
|Bk(θ

ℓ)|
∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣∣∇kM(θℓ)−∇kEε̃[M̃(θℓ)|S, σdata]
∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kEε̃[mỸi,Zi
(θℓ)

∣∣S, σdata]
]∣∣∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

Eε̃

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

∣∣S, σdata
]∣∣∣∣∣S, σdata

]
(By Leibniz rule)

≤ Eεn,ε̃

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]
.

Define i.i.d Rademacher variables ν := (ν1, ..., νn) such that Pr(νi = 1) = Pr(νi = −1) = 1
2
.

Since mYi,Zi
(θℓ)−mỸi,Zi

(θℓ) ∼ νi[mYi,Zi
(θℓ)−mỸi,Zi

(θℓ)], we have

Eεn,ε̃

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]

= Eεn,ε̃,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi
[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]

≤ Eεn,ε̃,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣+ max
ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmỸi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]

= 2Eεn,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]

= 2Eεn

[
Eν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]∣∣∣S, σdata

]
.
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By Lemma D.7, 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ) is a sub-Gaussian process with parameter τ/
√
nυ2.

Therefore, by the upper bound of sub-Gaussian maxima (Lemma E.5), we have:

E
[

max
ℓ=1,...,H

|Bk(θ
ℓ)|
∣∣∣S, σdata

]
≤ 2τ√

nυ

√
log(Nc(δ,Θ, L1)). (67)

Now, apply Lemma D.8 to bound the L1-metric entropy log(Nc(δ,Θ, L1)):

log(Nc(δ,Θ, L1)) ≤ dθ log
(
1 +

2

δ

)
. (68)

Combining Eq.67 with Eq.68, we have:

E
[

max
ℓ=1,...,H

|Bk(θ
ℓ)|
∣∣∣S, σdata

]
≤ 2τ

√
dθ√

nυ

√
log

(
1 +

2

δ

)
. (69)

Combining Eq.65 with Eq.66 and Eq.69, we have:

E
[
|Bk(θ̃)|

∣∣∣S, σdata
]
≤ ωz̄2δ +

2τ
√
dθ√

nυ

√
log

(
1 +

2

δ

)
.

By choosing δ = 1
ωz̄2

√
n
, we conclude:

E
[
sup
θ∈Θ
|Bk(θ)|

∣∣∣S, σdata
]
≤ 1√

n

(
1 +

2τ

υ

√
dθ log(1 + 2|ω|z̄2

√
n)
)
.

To finish the proof, define CB1 = 2τ/υ, and CB2 = 2|ω|z̄2.

D.5 Lemma D.5

Lemma D.5. Under Assumption 2, for all i = 1, ..., n,

Eεn
[
|σ̂data

i − σdata
i |

∣∣S, σdata
]
≤ Cσ

√
1 + ln(2)

n
.

Proof. This proof follows the same proof strategy as Lemma 5.1 in Kitagawa and Wang
(2023b). Recall that for any nonnegative random variable Y, E(Y ) =

∫∞
0

Pr(Y ≥ t)dt. Hence,
for any a > 0,

E(|σ̂data
i − σdata

i |2) =
∫ ∞

0

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

=

∫ a

0

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

≤ a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt.
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Assumption 2 implies that Pr(|σ̂data
i − σdata

i | ≥
√
t) ≤ 2e−Nt/C2

σ . Hence,

E(|σ̂data
i − σdata

i |2) ≤ a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

= a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i | ≥
√
t)dt

≤ a+ 2

∫ ∞

a

e−nt/C2
σdt

= a+ 2
C2

σ

n
e−Na/C2

σ .

Set a = C2
σ ln(2)/n and we have

E(|σ̂data
i − σdata

i |2) ≤ ln(2)C2
σ

n
+

C2
σ

n
= C2

σ

1 + ln(2)

n
.

Therefore,

E(|σ̂data
i − σdata

i |) ≤
√

(E(|σ̂data
i − σdata

i |2) ≤ Cσ

√
1 + ln(2)

n
.

D.6 Lemma D.6: Lipschitz Property

Lemma D.6. (Lipschitz Property) Define z := maxi=1,...,n ∥Zi∥∞. The following condition on
G̃n(·) is satisfied:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ |ω|z̄2δ.

Proof. First, we have:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ sup

γ,γ′∈Θ
∥γ−γ′∥1≤δ

|∇kM(γ)−∇kM(γ′)|+ sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|∇kM(γ′)−∇kM(γ)|.

(70)

The first term in Eq.70 is:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

Yi

[F ′
ε(Z

⊺
i γ)

Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

Fε(Z
⊺
i γ

′)

]
Zik

− 1

n

n∑
i=1

(1− Yi)
[ F ′

ε(Z
⊺
i γ)

1− Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

1− Fε(Z
⊺
i γ

′)

]
Zik.
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The second term in Eq.70 is:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

Eεn

[
Yi

[F ′
ε(Z

⊺
i γ)

Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

Fε(Z
⊺
i γ

′)

]
Zik

∣∣∣S, σdata
]

− 1

n

n∑
i=1

Eεn

[
(1− Yi)

[ F ′
ε(Z

⊺
i γ)

1− Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

1− Fε(Z
⊺
i γ

′)

]
Zik

∣∣∣S, σdata
]
.

Applying the Mean Value Theorem to both, we have:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

[
Yiω0(Z

⊺
i γ́)− (1− Yi)ω1(Z

⊺
i γ́)

]
ZikZ

⊺
i (γ − γ′),

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

[
σn
i ω0(Z

⊺
i γ̀)− (1− σi)ω1(Z

⊺
i γ̀

n)
]
ZikZ

⊺
i (γ − γ′).

where σn
i = Eεn [Yi|S, σdata], and for some γ́ ∈ Rdθ , γ̀ ∈ Rdθ on the segment from γ to γ′. Then,

|∇kM(γ)−∇kM(γ′)| ≤ 1

n

n∑
i=1

|Yiω0(Z
⊺
i γ̀)− (1− Yi)ω1(Z

⊺
i γ̀)| · |Zik| · |Z⊺

i (γ − γ′)|. (71)

By Assumption 4, ω0(a) < 0 and ω1(a) > 0 for all a ∈ R. Recall that

ω0 := min
x∈Ξ

ω0(x), ω1 := min
x∈Ξ
−ω1(x), ω := min{ω0, ω1}. (72)

Combining Eq.71 with Eq.72, we have

|∇kM(γ)−∇kM(γ′)| ≤ |ω|
n

n∑
i=1

|Z⊺
i (γ − γ′)| · |Zik|

≤ |ω|
n

n∑
i=1

∥Zi∥22||γ − γ′∥1

(By Holder’s Inequality)
≤ |ω|z̄2∥γ − γ′∥1,

where z := maxi=1,...,n ∥Zi∥∞. By the same argument,

|∇kM(γ)−∇kM(γ′)| ≤ |ω|z̄2∥γ − γ′∥1.

Combining above two equations with Eq.70 gives:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ |ω|z̄2δ.

70



D.7 Lemma D.7: Sub-Guassian Process

Lemma D.7. (Sub-Guassian Process) Define z := maxi=1,...,n ∥Zi∥∞. 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ) is
a sub-Gaussian process with parameter τ/

√
nυ2.

Proof. We start from the expectation of the moment-generating function of 1/n
∑n

i=1 νi∇kmYi,Zi
(·),

which is

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]
=

n∏
i=1

Eν

[
exp

[ s
n
νi∇kmYi,Zi

(θℓ)
]∣∣∣S, σdata

]
,

where the equality holds as {εi}ni=1, {vi}ni=1 are i.i.d. In addition, the gradient of mYi,Zi
(θℓ) is:

∇θmYi,Zi
(θℓ) =

[
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

]
Zi.

Therefore,

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]

=
n∏

i=1

Eν

[
exp

[sνi
n

(
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

)
Zik

]∣∣∣S, σdata
]
.

By Hoeffding’s Lemma (Lemma E.4),

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]

≤
n∏

i=1

exp
[ s2

2n2

(
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

)2

Z2
ik

]
≤

n∏
i=1

exp
[ s2

2n2

(
Yi
τ

υ
+ (1− Yi)

τ

υ

)2

Z2
ik

]
= exp

[ s2τ 2

2n2υ2

n∑
i=1

Z2
ik

]
≤ exp

[ s2τ 2
2nυ2

z̄2
]
.

Recall υ := min{F ε, 1 − F ε}, where F ε := minθ∈Θ
z∈Z

Fε(z
⊺θ), and F ε := maxθ∈Θ

z∈Z
Fε(z

⊺θ). There-

fore, 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ) is a sub-Gaussian process with parameter τ/
√
nυ2.
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D.8 Lemma D.8: Covering Number

Lemma D.8. (Covering Number) The δ-covering number of a compact parameter space Θ ∈
Rdθ with L1 metric Nc(δ,Θ, L1) is upper bounded by (1 + 1

δ
)dθ .

Proof. As parameter space Θ is compact, there exists a constant Cθ such that supθ∈Θ ∥θ∥1 ≤
Cθ < ∞. Let us denote Cθ-ball as B := {θ ∈ Rdθ | ∥θ∥1 ≤ Cθ}. Then, the covering num-
ber of the parameter space Nc(δ,Θ, L1) is bounded by the covering number of the Cθ-ball
Nc(δ, B, L1). Applying Lemma E.3, we have:

Nc(δ, B, L1) ≤
vol

(
(1 + 2

δ
)B

)
vol(B)

=
(
1 +

2

δ

)dθ ,
where the first inequality holds as the Cθ-ball is defined using the same metric as the covering
number. Therefore,

Nc(δ,Θ, L1) ≤
(
1 +

2

δ

)dθ .

Appendix E Results from Previous Literature

Lemma E.1. (Extreme Value Theorem) If f is continuous on a closed interval [a, b], then f
attains both an absolute maximum value and an absolute minimum value at some numbers in
[a, b] .

Lemma E.2. (Berge’s Maximum Theorem (Berge, 1963)) Let X ⊆ RL and Y ⊆ RK , let
f : X × Y → R be a continuous function and Γ : X → Y be a compact-valued and continuous
correspondence. Then the function v : X → R such that v(x) = supy∈Γ(x) f(x, y) is continuous.

Lemma E.3. (Volume ratios and Metric Entropy (Wainwright, 2019, §Lemma 5.7)) Consider
a pair of norms ∥ · ∥ and ∥ · ∥′ on Rd, and let B and B′ be their corresponding unit balls (i.e.,
B = {θ ∈ Rd | ∥θ∥ ≤ 1}, with B′ similarly defined). Then the δ-covering number of B in the
∥ · ∥′-norm obeys the bounds(

1

δ

)d
vol(B)

vol(B′)
≤ Nc(δ;B, ∥ · ∥′) ≤

vol
(
2
δ
B +B′)

vol(B′)
.

Lemma E.4. (Hoeffding’s Lemma) Let X be a random variable with EX = 0, a ≤ X ≤ b.
Then, for s > 0,

E(esX) ≤ es
2(b−a)2/8.

Lemma E.5. (Upper bounds for Sub-Gaussian maxima) Let λ > 0, n ≥ 2, and let Y1, . . . , Yn

be real-valued random variables such that, for all s > 0 and 1 ≤ i ≤ n, E(esYi) ≤ eλ
2s2/2 holds.

Then,

(i) E(maxi≤n Yi) ≤ λ
√
2 lnn,
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(ii) E(maxi≤n |Yi|) ≤ λ
√

2 ln(2n) ≤ 2λ
√

ln(n).

Lemma E.6 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, ..., Xn be independent bounded
random variables such that Xi falls in the interval [ai, bi] with probability one. Denote their sum
by Sn =

∑n
i=1Xi. Then for any ε > 0 we have

Pr{Sn − ESn ≥ ε} ≤ e−2e2/
∑n

i=1(bi−ai)
2

,

and
Pr{Sn − ESn ≤ −ε} ≤ e−2e2/

∑n
i=1(bi−ai)

2

.
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